Suppr超能文献

镁合金AZ31在低周疲劳条件下多轴行为的增强循环稳定塑性模型

Enhanced Cyclically Stable Plasticity Model for Multiaxial Behaviour of Magnesium Alloy AZ31 under Low-Cycle Fatigue Conditions.

作者信息

Litrop Aljaž, Klemenc Jernej, Nagode Marko, Šeruga Domen

机构信息

Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, SI-1000 Ljubljana, Slovenia.

出版信息

Materials (Basel). 2024 Sep 23;17(18):4659. doi: 10.3390/ma17184659.

Abstract

Magnesium alloys, particularly AZ31, are promising materials for the modern automotive industry, offering significant weight savings and environmental benefits. This research focuses on the challenges associated with accurate modelling of multiaxial cyclic plasticity at small strains of AZ31 under low-cycle fatigue conditions. Current modelling approaches, including crystal plasticity and phenomenological plasticity, have been extensively explored. However, the existing models reach their limits when it comes to capturing the complexity of cyclic plasticity in magnesium alloys, especially under multiaxial loading conditions. To address this gap, a cyclically stable elastoplastic model is proposed that integrates elements from existing models with an enhanced algorithm for updating stresses and hardening parameters, using the hyperbolic tangent function to describe hardening and ensure a stabilised response with closed hysteresis loops for both uniaxial and multiaxial loading. The model is based on a von Mises yield surface and includes a kinematic hardening rule that promises a stable simulation of the response of AZ31 sheets under cyclic loading. Using experimental data from previous studies on AZ31 sheets, the proposed model is optimised and validated. The model shows promising capabilities in simulating the response of AZ31 sheet metal under different loading conditions. It has significant potential to improve the accuracy of fatigue simulations, especially in the context of automotive applications.

摘要

镁合金,尤其是AZ31,是现代汽车工业中很有前景的材料,能显著减轻重量并带来环境效益。本研究聚焦于在低周疲劳条件下,对AZ31小应变下多轴循环塑性进行精确建模所面临的挑战。目前的建模方法,包括晶体塑性和唯象塑性,已得到广泛探索。然而,现有模型在捕捉镁合金循环塑性的复杂性时,尤其是在多轴加载条件下,达到了其极限。为填补这一空白,提出了一种循环稳定的弹塑性模型,该模型将现有模型的元素与一种用于更新应力和硬化参数的增强算法相结合,使用双曲正切函数来描述硬化,并确保单轴和多轴加载下具有封闭滞后环的稳定响应。该模型基于冯·米塞斯屈服面,并包括一个运动硬化规则,有望对AZ31板材在循环加载下的响应进行稳定模拟。利用先前关于AZ31板材研究的实验数据,对所提出的模型进行了优化和验证。该模型在模拟AZ31板材在不同加载条件下的响应方面显示出有前景的能力。它在提高疲劳模拟的准确性方面具有巨大潜力,特别是在汽车应用背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3657/11433478/5b8eed3d6746/materials-17-04659-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验