Suppr超能文献

使用新型免疫失衡转录组学算法比较 B 细胞狼疮和淋巴瘤,揭示潜在的治疗靶点。

Comparison of B-Cell Lupus and Lymphoma Using a Novel Immune Imbalance Transcriptomics Algorithm Reveals Potential Therapeutic Targets.

机构信息

Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.

McKay School of Education, Brigham Young University, Provo, UT 84602, USA.

出版信息

Genes (Basel). 2024 Sep 17;15(9):1215. doi: 10.3390/genes15091215.

Abstract

BACKGROUND/OBJECTIVES: Systemic lupus erythematosus (lupus) and B-cell lymphoma (lymphoma) co-occur at higher-than-expected rates and primarily depend on B cells for their pathology. These observations implicate shared inflammation-related B cell molecular mechanisms as a potential cause of co-occurrence.

METHODS

We consequently implemented a novel Immune Imbalance Transcriptomics (IIT) algorithm and applied IIT to lupus, lymphoma, and healthy B cell RNA-sequencing (RNA-seq) data to find shared and contrasting mechanisms that are potential therapeutic targets.

RESULTS

We observed 7143 significantly dysregulated genes in both lupus and lymphoma. Of those genes, we found 5137 to have a significant immune imbalance, defined as a significant dysregulation by both diseases, as analyzed by IIT. Gene Ontology (GO) term and pathway enrichment of the IIT genes yielded immune-related "Neutrophil Degranulation" and "Adaptive Immune System", which validates that the IIT algorithm isolates biologically relevant genes in immunity and inflammation. We found that 344 IIT gene products are known targets for established and/or repurposed drugs. Among our results, we found 48 known and 296 novel lupus targets, along with 151 known and 193 novel lymphoma targets. Known disease drug targets in our IIT results further validate that IIT isolates genes with disease-relevant mechanisms.

CONCLUSIONS

We anticipate the IIT algorithm, together with the shared and contrasting gene mechanisms uncovered here, will contribute to the development of immune-related therapeutic options for lupus and lymphoma patients.

摘要

背景/目的:系统性红斑狼疮(狼疮)和 B 细胞淋巴瘤(淋巴瘤)的并发率高于预期,且主要依赖 B 细胞发病。这些观察结果暗示炎症相关的 B 细胞分子机制可能是并发的潜在原因。

方法

我们因此实施了一种新型免疫失衡转录组学(IIT)算法,并将 IIT 应用于狼疮、淋巴瘤和健康 B 细胞 RNA 测序(RNA-seq)数据,以寻找潜在的治疗靶点的共享和对比机制。

结果

我们观察到狼疮和淋巴瘤中均有 7143 个显著失调的基因。在这些基因中,我们发现 5137 个基因存在显著的免疫失衡,这是通过 IIT 分析两种疾病都显著失调的基因。IIT 基因的基因本体论(GO)术语和途径富集产生了免疫相关的“中性粒细胞脱颗粒”和“适应性免疫系统”,这验证了 IIT 算法可以分离免疫和炎症中生物学上相关的基因。我们发现 344 个 IIT 基因产物是已知的已上市和/或重新定位药物的靶点。在我们的结果中,我们发现了 48 个已知和 296 个新的狼疮靶点,以及 151 个已知和 193 个新的淋巴瘤靶点。我们 IIT 结果中的已知疾病药物靶点进一步验证了 IIT 可以分离出与疾病相关机制的基因。

结论

我们预计 IIT 算法以及这里揭示的共享和对比基因机制将有助于为狼疮和淋巴瘤患者开发免疫相关的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c38/11431704/007c66bb47f4/genes-15-01215-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验