Suppr超能文献

探索新型组氨酸氨裂解酶的动力学和热力学性质。

Exploring the Kinetics and Thermodynamics of a Novel Histidine Ammonia-Lyase from .

机构信息

Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain.

Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Almería, 04120 Almería, Spain.

出版信息

Int J Mol Sci. 2024 Sep 21;25(18):10163. doi: 10.3390/ijms251810163.

Abstract

Histidine ammonia-lyase (HAL) plays a pivotal role in the non-oxidative deamination of L-histidine to produce -urocanic, a crucial process in amino acid metabolism. This study examines the cloning, purification, and biochemical characterization of a novel HAL from (HAL) and eight active site mutants to assess their effects on substrate binding, catalysis, thermostability, and secondary structure. The HAL enzyme was successfully overexpressed and purified to homogeneity. Its primary sequence displayed 40.7% to 43.7% similarity with other known HALs and shared the same oligomeric structure in solution. Kinetic assays showed that HAL has optimal activity at 85 °C and pH 8.5, with high thermal stability even after preincubation at high temperatures. Mutations at Y52, H82, N194, and E411 resulted in a complete loss of catalytic activity, underscoring their essential role in enzyme function, while mutations at residues Q274, R280, and F325 did not abolish activity but did reduce catalytic efficiency. Notably, mutants R280K and F325Y displayed novel activity with L-histidinamide, expanding the substrate specificity of HAL enzymes. Circular dichroism (CD) analysis showed minor secondary structure changes in the mutants but no significant effect on global HAL folding. These findings suggest that HAL could be a promising candidate for potential biotechnological applications.

摘要

组氨酸氨裂解酶(HAL)在 L-组氨酸的非氧化脱氨作用中起着关键作用,产生 - 尿刊酸,这是氨基酸代谢中的一个重要过程。本研究从 (HAL)克隆、纯化和生化特性分析一种新型 HAL,并对其八个活性位点突变体进行研究,以评估它们对底物结合、催化、热稳定性和二级结构的影响。成功地过表达和纯化了 HAL 酶,达到均一性。其一级序列与其他已知的 HAL 具有 40.7%到 43.7%的相似性,并在溶液中具有相同的寡聚结构。动力学分析表明,HAL 在 85°C 和 pH8.5 时具有最佳活性,即使在高温下预先孵育后也具有很高的热稳定性。突变 Y52、H82、N194 和 E411 导致完全丧失催化活性,突出了它们在酶功能中的重要作用,而突变 Q274、R280 和 F325 不会完全丧失活性,但会降低催化效率。值得注意的是,突变体 R280K 和 F325Y 对 L-组氨酸酰胺具有新的活性,扩展了 HAL 酶的底物特异性。圆二色性(CD)分析表明突变体的二级结构变化较小,但对全局 HAL 折叠没有显著影响。这些发现表明 HAL 可能是一种有前途的潜在生物技术应用候选酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/041d/11432326/e48158ec4ecb/ijms-25-10163-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验