Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
Int J Mol Sci. 2024 Sep 23;25(18):10216. doi: 10.3390/ijms251810216.
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC-MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology.
缺氧肿瘤微环境显著影响细胞行为和细胞间通讯,细胞外囊泡 (EVs) 在促进血管生成、转移和宿主免疫抑制方面发挥着关键作用,并且假定癌症的进展和转移与 EVs 中异常的表面 N-糖基化表达密切相关。我们假设缺氧肿瘤会合成特定的缺氧诱导的 N-聚糖,以响应或作为缺氧的结果。本研究利用纳升液相色谱-串联质谱 (nano-LC-MS/MS) 整合了正常氧和缺氧条件下培养的 MDA-MB-231 乳腺癌细胞系的细胞和 EVs 的定量蛋白质组学和 N-糖组学分析。全 N-糖组和蛋白质组谱分析表明,缺氧会影响细胞中天冬酰胺 N-糖基化模式以及糖酵解/糖异生蛋白,以适应低氧环境。改变的 N-糖基化表明,缺氧对细胞中的天冬酰胺 N-糖基化模式以及糖酵解/糖异生蛋白产生影响。另一方面,在缺氧细胞中观察到唾液酸化和岩藻糖基化模式的改变。此外,缺氧诱导的 EVs 表现出一种特征性的组成,包括单天线结构和特定的 N-聚糖 (H4N3F1S2、H3N3F1S0 和 H7N4F3S2;H8N4F1S0 和 H8N6F1S2),这些聚糖与乳腺癌的不良预后显著相关,可能改变肿瘤微环境内的相互作用,以促进肿瘤发生和转移。我们的研究结果提供了 N-聚糖谱的概述,特别是在缺氧条件下,并为跟踪肿瘤微环境动态和开发肿瘤学精准医学方法提供了潜在的生物标志物。