Berenschot Erwin, Tiggelaar Roald M, Borgelink Bjorn, van Kampen Chris, Deenen Cristian S, Pordeli Yasser, Witteveen Haye, Gardeniers Han J G E, Tas Niels R
Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
NanoLab Cleanroom, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
ACS Appl Nano Mater. 2022 Oct 28;5(10):15847-15854. doi: 10.1021/acsanm.2c04079. Epub 2022 Oct 12.
High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1-2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through "concave" corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.
通过在二氧化硅硬掩膜上进行凸角光刻,并结合在重复的自对准倍增过程中的各向异性晶体蚀刻,在硅(100)晶圆上创建了由{111}平面界定的高密度硅楔阵列。基于通过位移塔尔博特光刻获得的约120 nm的初始间距,已实现了约30 nm的平均间距。通过采用8 nm的二氧化硅掩膜层(在{111}平面上测量),凸角光刻的典型分辨率降低到了亚10 nm范围。在蚀刻楔形尖端暴露的硅时,可以获得6 nm的纳米间隙和薄至1-2 nm的独立二氧化硅薄片。为了实现重复过程,有必要通过“凹”角光刻来保护楔形之间的凹角。所生产的高密度楔形阵列提供了一个有前景的模板,可用于在各个领域制造具有亚10 nm范围内相关细节的大型纳米器件阵列。