Kim Jong-Ho, Han Sung-Woo, Hwang Sung-Mi, Lee Jae-Jun, Kwon Young-Suk
Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea.
Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea.
J Pers Med. 2024 Aug 25;14(9):902. doi: 10.3390/jpm14090902.
This study develops a predictive model for video laryngoscopic views using advanced machine learning techniques, aiming to enhance airway management's efficiency and safety. A total of 212 participants were involved, with 169 in the training set and 43 in the test set. We assessed outcomes using the percentage of glottic opening (POGO) score and considered factors like the modified Mallampati classification, thyromental height and distance, sternomental distance, mouth opening distance, and neck circumference. A range of machine learning algorithms was employed for data analysis, including Random Forest, Light Gradient Boosting Machine, K-Nearest Neighbors, Support Vector Regression, Ridge Regression, and Lasso Regression. The models' performance was evaluated on the test set, with Root Mean Squared Error values ranging from 20.4 to 21.9. SHapley Additive exPlanations value analysis revealed that age is a consistent and significant predictor of POGO score across all models, highlighting its critical role in the predictive accuracy of these techniques.
本研究运用先进的机器学习技术开发了一种用于视频喉镜视野的预测模型,旨在提高气道管理的效率和安全性。共有212名参与者,其中169名在训练集,43名在测试集。我们使用声门开口百分比(POGO)评分评估结果,并考虑了如改良Mallampati分级、甲状软骨-颏下高度和距离、胸骨-颏下距离、开口距离和颈围等因素。采用了一系列机器学习算法进行数据分析,包括随机森林、轻梯度提升机、K近邻、支持向量回归、岭回归和套索回归。在测试集上评估了模型的性能,均方根误差值在20.4至21.9之间。SHapley加性解释值分析表明,年龄在所有模型中都是POGO评分的一致且重要的预测因素,突出了其在这些技术预测准确性中的关键作用。