Suppr超能文献

基于核机器学习的阳极氧化铝微悬臂梁激光吸收光谱远程传感鉴别爆炸物残留

Discrimination of Explosive Residues by Standoff Sensing Using Anodic Aluminum Oxide Microcantilever Laser Absorption Spectroscopy with Kernel-Based Machine Learning.

作者信息

Jeong Ho-Jung, Park Chang-Ju, Kim Kihyun, Park Yangkyu

机构信息

Inorganic Light-Emitting Display Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea.

Mobility Lighting Research Center, KOPTI, Gwangju 61007, Republic of Korea.

出版信息

Sensors (Basel). 2024 Sep 10;24(18):5867. doi: 10.3390/s24185867.

Abstract

Standoff laser absorption spectroscopy (LAS) has attracted considerable interest across many applications for environmental safety. Herein, we propose an anodic aluminum oxide (AAO) microcantilever LAS combined with machine learning (ML) for sensitive and selective standoff discrimination of explosive residues. A nanoporous AAO microcantilever with a thickness of <1 μm was fabricated using a micromachining process; its spring constant (18.95 mN/m) was approximately one-third of that of a typical Si microcantilever (53.41 mN/m) with the same dimensions. The standoff infrared (IR) spectra of pentaerythritol tetranitrate, cyclotrimethylene trinitramine, and trinitrotoluene were measured using our AAO microcantilever LAS over a wide range of wavelengths, and they closely matched the spectra obtained using standard Fourier transform infrared spectroscopy. The standoff IR spectra were fed into ML models, such as kernel extreme learning machines (KELMs), support vector machines (SVMs), random forest (RF), and backpropagation neural networks (BPNNs). Among these four ML models, the kernel-based ML models (KELM and SVM) were found to be efficient learning models able to satisfy both a high prediction accuracy (KELM: 94.4%, SVM: 95.8%) and short hyperparameter optimization time (KELM: 5.9 s, SVM: 7.6 s). Thus, the AAO microcantilever LAS with kernel-based learners could emerge as an efficient sensing method for safety monitoring.

摘要

对峙激光吸收光谱法(LAS)在许多环境安全应用中引起了广泛关注。在此,我们提出一种结合机器学习(ML)的阳极氧化铝(AAO)微悬臂梁LAS,用于对爆炸物残留进行灵敏且选择性的对峙鉴别。采用微加工工艺制备了厚度小于1μm的纳米多孔AAO微悬臂梁;其弹簧常数(18.95 mN/m)约为相同尺寸典型硅微悬臂梁(53.41 mN/m)的三分之一。使用我们的AAO微悬臂梁LAS在宽波长范围内测量了季戊四醇四硝酸酯、环三亚甲基三硝胺和三硝基甲苯的对峙红外(IR)光谱,这些光谱与使用标准傅里叶变换红外光谱法获得的光谱紧密匹配。将对峙IR光谱输入到机器学习模型中,如核极限学习机(KELM)、支持向量机(SVM)、随机森林(RF)和反向传播神经网络(BPNN)。在这四种机器学习模型中,基于核的机器学习模型(KELM和SVM)被发现是高效的学习模型,能够同时满足高预测准确率(KELM:94.4%,SVM:95.8%)和短超参数优化时间(KELM:5.9 s,SVM:7.6 s)。因此,具有基于核学习器的AAO微悬臂梁LAS可能成为一种用于安全监测的高效传感方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000b/11605237/a589a04c1d62/sensors-24-05867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验