Suppr超能文献

DGD-CNet:用于 IRS 辅助大规模 MIMO 系统的基于 dropout 的 CSI 网络的去噪门控循环单元

DGD-CNet: Denoising Gated Recurrent Unit with a Dropout-Based CSI Network for IRS-Aided Massive MIMO Systems.

作者信息

Abdelmaksoud Amina, Abdelhamid Bassant, Elbadawy Hesham, El Hennawy Hadia, Eldyasti Sherif

机构信息

Electronics and Communications Department, Faculty of Engineering, Modern Academy for Engineering and Technology, Cairo 11585, Egypt.

Electronics and Communications Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt.

出版信息

Sensors (Basel). 2024 Sep 14;24(18):5977. doi: 10.3390/s24185977.

Abstract

For the deployment of Sixth Generation (6G) networks, integrating Massive Multiple-Input Multiple-Output (Massive MIMO) systems with Intelligent Reflecting Surfaces (IRS) is highly recommended due to its significant benefits in reducing communication losses for Non-Line-of-Sight (NLoS) conditions. However, the use of passive IRS presents challenges in channel estimation, mainly due to the significant feedback overhead required in Frequency Division Duplex (FDD)-based Massive MIMO systems. To address these challenges, this paper introduces a novel Denoising Gated Recurrent Unit with a Dropout-based Channel state information Network (DGD-CNet). The proposed DGD-CNet model is specifically designed for FDD-based IRS-aided Massive MIMO systems, aiming to reduce the feedback overhead while improving the channel estimation accuracy. By leveraging the Dropout (DO) technique with the Gated Recurrent Unit (GRU), the DGD-CNet model enhances the channel estimation accuracy and effectively captures both spatial structures and time correlation in time-varying channels. The results show that the proposed DGD-CNet model outperformed existing models in the literature, achieving at least a 26% improvement in Normalized Mean Square Error (NMSE), a 2% increase in correlation coefficient, and a 4% in system accuracy under Low-Compression Ratio (Low-CR) in indoor situations. Additionally, the proposed model demonstrates effectiveness across different CRs and in outdoor scenarios.

摘要

对于第六代(6G)网络的部署,由于在减少非视距(NLoS)条件下的通信损耗方面具有显著优势,强烈建议将大规模多输入多输出(Massive MIMO)系统与智能反射面(IRS)集成。然而,无源IRS的使用在信道估计方面存在挑战,主要是因为基于频分双工(FDD)的大规模MIMO系统需要大量的反馈开销。为了应对这些挑战,本文引入了一种基于带随机失活的信道状态信息网络(DGD-CNet)的新型去噪门控循环单元。所提出的DGD-CNet模型专门为基于FDD的IRS辅助大规模MIMO系统设计,旨在减少反馈开销,同时提高信道估计精度。通过将随机失活(DO)技术与门控循环单元(GRU)相结合,DGD-CNet模型提高了信道估计精度,并有效地捕捉了时变信道中的空间结构和时间相关性。结果表明,所提出的DGD-CNet模型在文献中的现有模型中表现更优,在室内低压缩率(Low-CR)情况下,归一化均方误差(NMSE)至少提高了26%,相关系数提高了2%系统精度提高了4%。此外,所提出的模型在不同的压缩率和室外场景中都表现出有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc7/11435982/43092489fbc3/sensors-24-05977-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验