Suppr超能文献

基于深度学习的 MIMO 系统中智能反射面辅助物理层密钥生成。

Intelligent Reflecting Surface-Assisted Physical Layer Key Generation with Deep Learning in MIMO Systems.

机构信息

School of Computer Science, Sichuan University, Chengdu 610065, China.

Institute for Industrial Internet Research, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2022 Dec 21;23(1):55. doi: 10.3390/s23010055.

Abstract

Physical layer secret key generation (PLKG) is a promising technology for establishing effective secret keys. Current works for PLKG mostly study key generation schemes in ideal communication environments with little or even no signal interference. In terms of this issue, exploiting the reconfigurable intelligent reflecting surface (IRS) to assist PLKG has caused an increasing interest. Most IRS-assisted PLKG schemes focus on the single-input-single-output (SISO), which is limited in future communications with multi-input-multi-output (MIMO). However, MIMO could bring a serious overhead of channel reciprocity extraction. To fill the gap, this paper proposes a novel low-overhead IRS-assisted PLKG scheme with deep learning in the MIMO communications environments. We first combine the direct channel and the reflecting channel established by the IRS to construct the channel response function, and we propose a theoretically optimal interaction matrix to approach the optimal achievable rate. Then we design a channel reciprocity-learning neural network with an IRS introduced (IRS-CRNet), which is exploited to extract the channel reciprocity in time division duplexing (TDD) systems. Moreover, a PLKG scheme based on the IRS-CRNet is proposed. Final simulation results verify the performance of the PLKG scheme based on the IRS-CRNet in terms of key generation rate, key error rate and randomness.

摘要

物理层密钥生成 (PLKG) 是一种建立有效密钥的有前途的技术。目前的 PLKG 工作主要研究在理想通信环境中生成密钥的方案,这些环境中的信号干扰很少甚至没有。在这个问题上,利用可重构智能反射面 (IRS) 来辅助 PLKG 引起了越来越多的兴趣。大多数 IRS 辅助的 PLKG 方案都集中在单输入单输出 (SISO) 上,这在未来的多输入多输出 (MIMO) 通信中受到限制。然而,MIMO 会带来信道互易性提取的严重开销。为了填补这一空白,本文提出了一种在 MIMO 通信环境中基于深度学习的新型低开销 IRS 辅助 PLKG 方案。我们首先结合直接信道和 IRS 建立的反射信道来构造信道响应函数,并提出了一个理论最优的交互矩阵来逼近最优可达速率。然后,我们设计了一个带有 IRS 的信道互易性学习神经网络 (IRS-CRNet),用于在时分双工 (TDD) 系统中提取信道互易性。此外,还提出了一种基于 IRS-CRNet 的 PLKG 方案。最终的仿真结果验证了基于 IRS-CRNet 的 PLKG 方案在密钥生成率、密钥误码率和随机性方面的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0271/9823732/35b81e174a0e/sensors-23-00055-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验