Vatankhah Aida, Liscano Ramiro
Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.
Sensors (Basel). 2024 Sep 15;24(18):5987. doi: 10.3390/s24185987.
The emergence of the Internet of Things (IoT) has attracted significant attention in industrial environments. These applications necessitate meeting stringent latency and reliability standards. To address this, the IEEE 802.15.4e standard introduces a novel Medium Access Control (MAC) protocol called Time Slotted Channel Hopping (TSCH). Designing a centralized scheduling system that simultaneously achieves the required Quality of Service (QoS) is challenging due to the multi-objective optimization nature of the problem. This paper introduces a novel optimization algorithm, QoS-aware Multi-objective enhanced Differential Evolution optimization (QMDE), designed to handle the QoS metrics, such as delay and packet loss, across multiple services in heterogeneous networks while also achieving the anticipated service throughput. Through co-simulation between TSCH-SIM and Matlab, R2023a we conducted multiple simulations across diverse sensor network topologies and industrial QoS scenarios. The evaluation results illustrate that an optimal schedule generated by QMDE can effectively fulfill the QoS requirements of closed-loop supervisory control and condition monitoring industrial services in sensor networks from 16 to 100 nodes. Through extensive simulations and comparative evaluations against the Traffic-Aware Scheduling Algorithm (TASA), this study reveals the superior performance of QMDE, achieving significant enhancements in both Packet Delivery Ratio (PDR) and delay metrics.
物联网(IoT)的出现已在工业环境中引起了广泛关注。这些应用需要满足严格的延迟和可靠性标准。为了解决这个问题,IEEE 802.15.4e标准引入了一种名为时隙信道跳频(TSCH)的新型介质访问控制(MAC)协议。由于该问题具有多目标优化的性质,设计一个能同时实现所需服务质量(QoS)的集中式调度系统具有挑战性。本文介绍了一种新颖的优化算法,即QoS感知多目标增强差分进化优化(QMDE),旨在处理异构网络中多个服务的QoS指标,如延迟和丢包,同时还能实现预期的服务吞吐量。通过TSCH-SIM和Matlab R2023a之间的联合仿真,我们在不同的传感器网络拓扑和工业QoS场景下进行了多次仿真。评估结果表明,由QMDE生成的最优调度可以有效地满足传感器网络中16至100个节点的闭环监控和状态监测工业服务的QoS要求。通过广泛的仿真以及与流量感知调度算法(TASA)的对比评估,本研究揭示了QMDE的卓越性能,在分组投递率(PDR)和延迟指标方面均实现了显著提升。