Braintime Laboratory, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, New Taipei City 235, Taiwan.
Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
Sensors (Basel). 2024 Sep 18;24(18):6041. doi: 10.3390/s24186041.
Long-term observation of single-cell oscillations within tissue networks is now possible by combining bioluminescence reporters with stable tissue explant culture techniques. This method is particularly effective in revealing the network dynamics in systems with slow oscillations, such as circadian clocks. However, the low intensity of luciferase-based bioluminescence requires signal amplification using specialized cameras (e.g., I-CCDs and EM-CCDs) and prolonged exposure times, increasing baseline noise and reducing temporal resolution. To address this limitation, we implemented a cost-effective optical enhancement technique called telecompression, first used in astrophotography and now commonly used in digital photography. By combining a high numerical aperture objective lens with a magnification-reducing relay lens, we significantly increased the collection efficiency of the bioluminescence signal without raising the baseline CCD noise. This method allows for shorter exposure times in time-lapse imaging, enhancing temporal resolution and enabling more precise period estimations. Our implementation demonstrates the feasibility of telecompression for enhancing bioluminescence imaging for the tissue-level network observation of circadian clocks.
通过将生物发光报告基因与稳定的组织外植体培养技术相结合,现在可以对组织网络中的单细胞振荡进行长期观察。这种方法在揭示具有缓慢振荡的系统(如生物钟)的网络动力学方面特别有效。然而,基于荧光素酶的生物发光强度低,需要使用专用相机(例如,I-CCD 和 EM-CCD)进行信号放大,并延长曝光时间,从而增加基线噪声并降低时间分辨率。为了解决这个限制,我们实施了一种经济有效的光学增强技术,称为远距压缩,该技术最初用于天体摄影,现在在数字摄影中也很常用。通过将高数值孔径物镜与放大率降低的中继透镜相结合,我们在不增加 CCD 基线噪声的情况下,显著提高了生物发光信号的收集效率。这种方法允许在延时成像中使用更短的曝光时间,从而提高时间分辨率并实现更精确的周期估计。我们的实现证明了远距压缩在增强生物钟组织水平网络观察中的生物发光成像方面的可行性。