Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
Cell Chem Biol. 2020 Aug 20;27(8):904-920. doi: 10.1016/j.chembiol.2020.07.022. Epub 2020 Aug 13.
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
生物发光长期以来一直被用于活体生物过程的成像。该技术的特点是荧光素酶酶和荧光素小分子,可产生可见光。生物发光光子可以在组织和活体生物中检测到,从而实现对生理功能的敏感和非侵入性读出。传统的应用主要集中在跟踪细胞和基因表达模式上,但新的探针正在推动可以可视化的前沿。过去几年,生物发光还与光遗传学平台相结合。荧光素酶-荧光素反应可以驱动光激活蛋白,最终引发信号转导和其他下游事件。这篇综述强调了生物发光技术的这些和其他最新进展,重点是工具的开发。我们展示了新的荧光素和工程化的荧光素酶如何扩展光学成像的范围。我们还强调了生物发光系统如何不仅用于传感,而且还用于控制生物过程。