Department of Material Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
Sensors (Basel). 2024 Sep 20;24(18):6088. doi: 10.3390/s24186088.
Laser and molecular detection techniques that have been used to overcome the limitations of fluorescent DNA labeling have presented new challenges. To address some of these challenges, we developed a DNA laser that uses a solid-state silica microsphere as a ring resonator and a site for DNA-binding reactions, as well as a platform to detect and sequence target DNA molecules. We detected target DNA using laser emission from a DNA-labeling dye and a developed solid-state silica microsphere ring resonator. The microsphere was sensitive; a single base mismatch in the DNA resulted in the absence of an optical signal. As each individual microsphere can be utilized as a parallel DNA analysis chamber, this optical digital detection scheme allows for high-throughput and rapid analysis. More importantly, the solid-state DNA laser is free from deformation, which guarantees stable lasing characteristics, and can be manipulated freely outside the solution. Thus, this promising advanced DNA laser scheme can be implemented on platforms other than optofluidic chips.
已经开发出了激光和分子检测技术,以克服荧光 DNA 标记的局限性,这些技术带来了新的挑战。为了应对其中的一些挑战,我们开发了一种 DNA 激光,它使用固态二氧化硅微球作为环形谐振器和 DNA 结合反应的场所,以及用于检测和测序靶 DNA 分子的平台。我们使用 DNA 标记染料和开发的固态二氧化硅微球环形谐振器的激光发射来检测靶 DNA。该微球具有很高的灵敏度;单个 DNA 碱基错配会导致没有光学信号。由于每个单个微球都可以用作并行 DNA 分析腔,因此这种光学数字检测方案允许进行高通量和快速分析。更重要的是,固态 DNA 激光不会变形,从而保证了稳定的激光特性,并且可以在溶液外自由操作。因此,这种有前途的先进 DNA 激光方案可以在除了光流控芯片之外的平台上实施。