Suppr超能文献

估算多个植被指数综合的生物群区和生长阶段的叶面积指数。

Estimation of Leaf Area Index across Biomes and Growth Stages Combining Multiple Vegetation Indices.

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430072, China.

School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Sensors (Basel). 2024 Sep 21;24(18):6106. doi: 10.3390/s24186106.

Abstract

The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale and high-frequency LAI estimation. VI-based LAI estimation is effective, but species and growth status impacts on the sensitivity of the VI-LAI relationship are rarely considered, especially for MERSI-II. This study analyzed the VI-LAI relationship for eight biomes in China with contrasting leaf structures and canopy architectures. The LAI was estimated by adaptively combining multiple VIs and validated using MODIS, GLASS, and ground measurements. Results show that (1) species and growth stages significantly affect VI-LAI sensitivity. For example, the EVI is optimal for broadleaf crops in winter, while the RDVI is best for evergreen needleleaf forests in summer. (2) Combining vegetation indices can significantly optimize sensitivity. The accuracy of multi-VI-based LAI retrieval is notably higher than using a single VI for the entire year. (3) MERSI-II shows good spatial-temporal consistency with MODIS and GLASS and is more sensitive to vegetation growth fluctuation. Direct validation with ground-truth data also demonstrates that the uncertainty of retrievals is acceptable (R = 0.808, RMSE = 0.642).

摘要

叶面积指数(LAI)是植被冠层结构和生长状况的关键指标,对全球生态环境研究至关重要。风云三号 D 星(FY-3D)上的中分辨率光谱成像仪-II(MERSI-II)每天全球覆盖两次,为大尺度、高频率的 LAI 估算提供了可靠的数据来源。基于 VI 的 LAI 估算方法有效,但很少考虑物种和生长状况对 VI-LAI 关系敏感性的影响,尤其是对于 MERSI-II。本研究分析了中国 8 种具有不同叶结构和冠层结构的生物群落的 VI-LAI 关系。利用自适应组合多种 VI 估算 LAI,并利用 MODIS、GLASS 和地面测量进行验证。结果表明:(1)物种和生长阶段显著影响 VI-LAI 敏感性。例如,EVI 对冬季阔叶作物最优,而 RDVI 对夏季常绿针叶林最优。(2)组合植被指数可以显著优化敏感性。基于多 VI 的 LAI 反演的准确性明显高于全年使用单一 VI。(3)MERSI-II 与 MODIS 和 GLASS 具有良好的时空一致性,对植被生长波动更敏感。与地面真值数据的直接验证也表明,反演的不确定性是可以接受的(R = 0.808,RMSE = 0.642)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825c/11436217/615fc6e97a84/sensors-24-06106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验