College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China.
CESBIO-UPS, CNES, CNRS, IRD, Université de Toulouse, CEDEX 9, 31401 Toulouse, France.
Sensors (Basel). 2021 Mar 17;21(6):2115. doi: 10.3390/s21062115.
Saturation effects limit the application of vegetation indices (VIs) in dense vegetation areas. The possibility to mitigate them by adopting a negative soil adjustment factor is addressed. Two leaf area index (LAI) data sets are analyzed using the Google Earth Engine (GEE) for validation. The first one is derived from observations of MODerate resolution Imaging Spectroradiometer (MODIS) from 16 April 2013, to 21 October 2020, in the Apiacás area. Its corresponding VIs are calculated from a combination of Sentinel-2 and Landsat-8 surface reflectance products. The second one is a global LAI dataset with VIs calculated from Landsat-5 surface reflectance products. A linear regression model is applied to both datasets to evaluate four VIs that are commonly used to estimate LAI: normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), transformed SAVI (TSAVI), and enhanced vegetation index (EVI). The optimal soil adjustment factor of SAVI for LAI estimation is determined using an exhaustive search. The Dickey-Fuller test indicates that the time series of LAI data are stable with a confidence level of 99%. The linear regression results stress significant saturation effects in all VIs. Finally, the exhaustive searching results show that a negative soil adjustment factor of SAVI can mitigate the SAVIs' saturation in the Apiacás area (i.e., = -0.148 for mean LAI = 5.35), and more generally in areas with large LAI values (e.g., = -0.183 for mean LAI = 6.72). Our study further confirms that the lower boundary of the soil adjustment factor can be negative and that using a negative soil adjustment factor improves the computation of time series of LAI.
饱和效应限制了植被指数(VIs)在植被茂密地区的应用。通过采用负土壤调整因子来缓解这些问题的可能性得到了探讨。使用 Google Earth Engine(GEE)对两个叶面积指数(LAI)数据集进行了分析和验证。第一个数据集是从 2013 年 4 月 16 日到 2020 年 10 月 21 日 MODerate 分辨率成像光谱仪(MODIS)的观测中得出的,位于 Apiacás 地区。其对应的 VIs 是通过 Sentinel-2 和 Landsat-8 地表反射率产品的组合计算得出的。第二个数据集是一个全球 LAI 数据集,其 VIs 是通过 Landsat-5 地表反射率产品计算得出的。对这两个数据集都应用了线性回归模型,以评估四种常用于估算 LAI 的 VIs:归一化差异植被指数(NDVI)、土壤调整植被指数(SAVI)、转换 SAVI(TSAVI)和增强植被指数(EVI)。通过穷举搜索确定了用于估算 LAI 的 SAVI 的最佳土壤调整因子。Dickey-Fuller 检验表明,LAI 数据的时间序列具有 99%的置信水平的稳定性。线性回归结果强调了所有 VIs 中都存在明显的饱和效应。最后,穷举搜索结果表明,在 Apiacás 地区(即平均 LAI = 5.35 时, = -0.148)和一般情况下在 LAI 值较大的地区(例如平均 LAI = 6.72 时, = -0.183),SAVI 的负土壤调整因子可以减轻 SAVI 的饱和效应。我们的研究进一步证实,土壤调整因子的下限可以为负,并且使用负土壤调整因子可以改善 LAI 时间序列的计算。