Suppr超能文献

紫外光固化油墨中纳米氧化铝团聚的耗散粒子动力学

Dissipative Particle Dynamics of Nano-Alumina Agglomeration in UV-Curable Inks.

作者信息

Li Chunlai, Guo Liang, Zheng Weihan

机构信息

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Polymers (Basel). 2024 Sep 14;16(18):2609. doi: 10.3390/polym16182609.

Abstract

Ultraviolet (UV) ink is a primary type of ink used in additive manufacturing with 3D inkjet printing. However, ink aggregation presents a challenge in nano-inkjet printing, affecting the stability and quality of the printing fluid and potentially leading to the clogging of nanometer-sized nozzles. This paper utilizes a Dissipative Particle Dynamics (DPD) simulation to investigate the aggregation behavior of alumina in a blend of 1,6-Hexanediol diacrylate (HDDA) and Trimethylolpropane triacrylate (TMPTA). By analyzing the effects of solid content, polymer component ratios, and dispersant concentration on alumina aggregation, the optimal ink formulation was identified. Compared to traditional experimental methods, DPD simulations not only reduce experimental costs and time but also reveal particle aggregation mechanisms that are difficult to explore through experimental methods, providing a crucial theoretical basis for optimizing ink formulations. This study demonstrates that alumina ceramic ink achieves optimal performance with a solid content of 20%, an HDDA-to-TMPTA ratio of 4:1, and 9% oleic acid as a dispersant.

摘要

紫外线(UV)油墨是3D喷墨打印增材制造中使用的主要油墨类型。然而,油墨聚集在纳米喷墨打印中是一个挑战,会影响打印流体的稳定性和质量,并可能导致纳米尺寸喷嘴堵塞。本文利用耗散粒子动力学(DPD)模拟研究了氧化铝在1,6-己二醇二丙烯酸酯(HDDA)和三羟甲基丙烷三丙烯酸酯(TMPTA)混合物中的聚集行为。通过分析固含量、聚合物组分比例和分散剂浓度对氧化铝聚集的影响,确定了最佳油墨配方。与传统实验方法相比,DPD模拟不仅降低了实验成本和时间,还揭示了难以通过实验方法探索的颗粒聚集机制,为优化油墨配方提供了关键的理论依据。本研究表明,氧化铝陶瓷油墨在固含量为20%、HDDA与TMPTA比例为4:1以及9%油酸作为分散剂时可实现最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0697/11435484/261de0f75690/polymers-16-02609-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验