Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA.
Molecules. 2024 Sep 20;29(18):4457. doi: 10.3390/molecules29184457.
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5'-truncated promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.
非典型 DNA G-四链体(G4)动态折叠成 G-三聚体中间体的景观,导致了 G-三聚体结构及其作为过氧化物酶模拟 DNA 酶的能力的研究。在这里,我们报告了 5'-截断启动子区域 G-三聚体 c-MYC-G3 的形成、稳定性和催化活性。通过圆二色性,我们证明了 c-MYC-G3 采用了稳定的平行链 G-三聚体构象。在钙离子存在下,c-MYC-G3 的过氧化物酶模拟 DNA 酶活性增加了对鲁米诺的化学发光氧化。我们利用表面等离子体共振来表征 c-MYC-G3 G-三聚体的形成及其与血红素的相互作用。对 c-MYC-G3 的详细研究及其形成 G-三聚体结构和 DNA 酶活性的能力确定了未来 G-三聚体 DNA 酶设计中可以解决的问题。