Suppr超能文献

分布数据对准确物种建模的影响:以(樟科)为例的案例研究。

Impacts of Distribution Data on Accurate Species Modeling: A Case Study of (Lauraceae).

作者信息

Tan Chao, Ferguson David Kay, Yang Yong

机构信息

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Longpan Rd., Nanjing 210037, China.

Department of Paleontology, University of Vienna, 1090 Vienna, Austria.

出版信息

Plants (Basel). 2024 Sep 14;13(18):2581. doi: 10.3390/plants13182581.

Abstract

Global warming has caused many species to become endangered or even extinct. Describing and predicting how species will respond to global warming is one of the hotspots of biodiversity research. Species distribution models predict the potential distribution of species based on species occurrence data. However, the impact of the accuracy of the distribution data on the prediction results is poorly studied. In this study, we used the endemic plant (Lauraceae) as a case study. By collecting and assembling six different datasets of this species, we used MaxEnt to perform species distribution modeling and then conducted comparative analyses. The results show that, based on our updated complete correct dataset (dataset 1), the suitable distribution of this species is mainly located in the Ta-pieh Mountain, southwestern Hubei and northern Zhejiang, and that mean diurnal temperature range (MDTR) and temperature annual range (TAR) play important roles in shaping the distribution of Compared with the correct data, the wrong data leads to a larger and expanded range in the predicted distribution area, whereas the species modeling based on the correct but incomplete data predicts a small and contracted range. We found that only about 23.38% of is located within nature reserves, so there is a huge conservation gap. Our study emphasized the importance of correct and complete distribution data for accurate prediction of species distribution regions; both incomplete and incorrect data can give misleading prediction results. In addition, our study also revealed the distribution characteristics and conservation gap of , laying the foundation for the development of reasonable conservation strategies for this species.

摘要

全球变暖已导致许多物种濒危甚至灭绝。描述和预测物种将如何应对全球变暖是生物多样性研究的热点之一。物种分布模型基于物种出现数据预测物种的潜在分布。然而,分布数据的准确性对预测结果的影响研究较少。在本研究中,我们以樟科特有植物为例。通过收集和整合该物种的六个不同数据集,我们使用最大熵模型进行物种分布建模,然后进行比较分析。结果表明,基于我们更新后的完整正确数据集(数据集1),该物种的适宜分布主要位于大巴山、湖北西南部和浙江北部,且日平均温度范围(MDTR)和年温度范围(TAR)在塑造该物种分布方面发挥着重要作用。与正确数据相比,错误数据导致预测分布区域更大且范围扩大,而基于正确但不完整数据的物种建模预测的范围较小且收缩。我们发现,该物种只有约23.38%位于自然保护区内,因此存在巨大的保护差距。我们的研究强调了正确和完整的分布数据对于准确预测物种分布区域的重要性;不完整和不正确的数据都会给出误导性的预测结果。此外,我们的研究还揭示了该物种的分布特征和保护差距,为制定该物种合理的保护策略奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f251/11435344/9df81b8e2c93/plants-13-02581-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验