Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA.
Nutrients. 2024 Sep 15;16(18):3117. doi: 10.3390/nu16183117.
BACKGROUND/OBJECTIVE: Nutritionists play a crucial role in guiding individuals toward healthier lifestyles through personalized meal planning; however, this task involves navigating a complex web of factors, including health conditions, dietary restrictions, cultural preferences, and socioeconomic constraints. The Analytic Hierarchy Process (AHP) offers a valuable framework for structuring these multi-faceted decisions but inconsistencies can hinder its effectiveness in pairwise comparisons.
This paper proposes a novel hybrid Particle Swarm Optimization-Simulated Annealing (PSO-SA) algorithm to refine inconsistent AHP weight matrices, ensuring a consistent and accurate representation of the nutritionist's expertise and client preferences. Our approach merges PSO's global search capabilities with SA's local search precision, striking an optimal balance between exploration and exploitation.
We demonstrate the practical utility of our algorithm through real-world use cases involving personalized meal planning for individuals with specific dietary needs and preferences. Results showcase the algorithm's efficiency in achieving consistency and surpassing standard PSO accuracy.
By integrating the PSO-SA algorithm into a mobile app, we empower nutritionists with an advanced decision-making tool for creating tailored meal plans that promote healthier dietary choices and improved client outcomes. This research represents a significant advancement in multi-criteria decision-making for nutrition, offering a robust solution to the inconsistency challenge in AHP and paving the way for more effective and personalized dietary interventions.
背景/目的:营养师在通过个性化膳食计划引导个人走向更健康的生活方式方面发挥着至关重要的作用;然而,这项任务涉及到导航一系列复杂的因素,包括健康状况、饮食限制、文化偏好和社会经济限制。层次分析法 (AHP) 为构建这些多方面的决策提供了一个有价值的框架,但不一致性会影响其在成对比较中的有效性。
本文提出了一种新颖的混合粒子群优化-模拟退火 (PSO-SA) 算法,用于细化不一致的 AHP 权重矩阵,确保营养师的专业知识和客户偏好得到一致且准确的表示。我们的方法将 PSO 的全局搜索能力与 SA 的局部搜索精度相结合,在探索和利用之间取得了最佳平衡。
我们通过涉及为有特定饮食需求和偏好的个人制定个性化膳食计划的实际用例,展示了我们算法的实际效用。结果展示了算法在实现一致性和超越标准 PSO 准确性方面的效率。
通过将 PSO-SA 算法集成到移动应用程序中,我们为营养师提供了一个先进的决策工具,用于创建促进更健康饮食选择和改善客户结果的定制膳食计划。这项研究代表了营养领域多标准决策的重大进展,为 AHP 中的不一致性挑战提供了一个强大的解决方案,并为更有效和个性化的饮食干预铺平了道路。