文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用基于 HIV 的假病毒平台对泛冠状病毒刺突蛋白进行细胞转导的优化。

Optimization of Cellular Transduction by the HIV-Based Pseudovirus Platform with Pan-Coronavirus Spike Proteins.

机构信息

Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA.

Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Viruses. 2024 Sep 20;16(9):1492. doi: 10.3390/v16091492.


DOI:10.3390/v16091492
PMID:39339968
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11437443/
Abstract

Over the past three years, new SARS-CoV-2 variants have continuously emerged, evolving to a point where an immune response against the original vaccine no longer provided optimal protection against these new strains. During this time, high-throughput neutralization assays based on pseudoviruses have become a valuable tool for assessing the efficacy of new vaccines, screening updated vaccine candidates against emerging variants, and testing the efficacy of new therapeutics such as monoclonal antibodies. Lentiviral vectors derived from HIV-1 are popular for developing pseudo and chimeric viruses due to their ease of use, stability, and long-term transgene expression. However, the HIV-based platform has lower transduction rates for pseudotyping coronavirus spike proteins than other pseudovirus platforms, necessitating more optimized methods. As the SARS-CoV-2 virus evolved, we produced over 18 variants of the spike protein for pseudotyping with an HIV-based vector, optimizing experimental parameters for their production and transduction. In this article, we present key parameters that were assessed to improve such technology, including (a) the timing and method of collection of pseudovirus supernatant; (b) the timing of host cell transduction; (c) cell culture media replenishment after pseudovirus adsorption; and (d) the centrifugation (spinoculation) parameters of the host cell+ pseudovirus mix, towards improved transduction. Additionally, we found that, for some pseudoviruses, the addition of a cationic polymer (polybrene) to the culture medium improved the transduction process. These findings were applicable across variant spike pseudoviruses that include not only SARS-CoV-2 variants, but also SARS, MERS, Alpha Coronavirus (NL-63), and bat-like coronaviruses. In summary, we present improvements in transduction efficiency, which can broaden the dynamic range of the pseudovirus titration and neutralization assays.

摘要

在过去的三年中,不断有新的 SARS-CoV-2 变体出现,这些变体进化到了对原始疫苗的免疫反应不再能为这些新菌株提供最佳保护的程度。在此期间,基于假病毒的高通量中和测定已成为评估新疫苗效力、筛选针对新出现变体的更新疫苗候选物以及测试新疗法(如单克隆抗体)疗效的宝贵工具。源自 HIV-1 的慢病毒载体因其易于使用、稳定性和长期转基因表达而成为开发假病毒和嵌合病毒的热门选择。然而,基于 HIV 的平台对冠状病毒刺突蛋白进行假型化的转导率低于其他假病毒平台,因此需要更优化的方法。随着 SARS-CoV-2 病毒的进化,我们用基于 HIV 的载体对超过 18 种刺突蛋白变体进行了假型化,优化了其生产和转导的实验参数。在本文中,我们介绍了评估提高该技术的关键参数,包括:(a)收集假病毒上清液的时间和方法;(b)宿主细胞转导的时间;(c)假病毒吸附后细胞培养物的补充;以及(d)宿主细胞+假病毒混合物的离心(旋转感染)参数,以提高转导效率。此外,我们发现对于某些假病毒,在培养基中添加阳离子聚合物(聚凝胺)可以改善转导过程。这些发现适用于包括 SARS-CoV-2 变体在内的各种变体刺突假病毒,以及 SARS、MERS、甲型冠状病毒(NL-63)和类似蝙蝠的冠状病毒。总之,我们提出了转导效率的改进,可以拓宽假病毒滴定和中和测定的动态范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/5479779f7893/viruses-16-01492-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/7d8c1c07f041/viruses-16-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/7c35d91769fc/viruses-16-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/d155ce5e528a/viruses-16-01492-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/fe3cbac3f238/viruses-16-01492-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/0eb7c5b74741/viruses-16-01492-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/e3768823063d/viruses-16-01492-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/c5fc734d5ae1/viruses-16-01492-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/5479779f7893/viruses-16-01492-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/7d8c1c07f041/viruses-16-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/7c35d91769fc/viruses-16-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/d155ce5e528a/viruses-16-01492-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/fe3cbac3f238/viruses-16-01492-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/0eb7c5b74741/viruses-16-01492-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/e3768823063d/viruses-16-01492-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/c5fc734d5ae1/viruses-16-01492-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6c/11437443/5479779f7893/viruses-16-01492-g008.jpg

相似文献

[1]
Optimization of Cellular Transduction by the HIV-Based Pseudovirus Platform with Pan-Coronavirus Spike Proteins.

Viruses. 2024-9-20

[2]
A real-time and high-throughput neutralization test based on SARS-CoV-2 pseudovirus containing monomeric infrared fluorescent protein as reporter.

Emerg Microbes Infect. 2021-12

[3]
Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.

Elife. 2020-10-28

[4]
Measuring Neutralizing Antibodies to SARS-CoV-2 Using Lentiviral Spike-Pseudoviruses.

Methods Mol Biol. 2022

[5]
Developing Pseudovirus-Based Neutralization Assay against Omicron-Included SARS-CoV-2 Variants.

Viruses. 2022-6-18

[6]
Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2.

Emerg Microbes Infect. 2020-12

[7]
Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.

J Virol. 2020-10-14

[8]
SARS-CoV-2 Delta Variant Displays Moderate Resistance to Neutralizing Antibodies and Spike Protein Properties of Higher Soluble ACE2 Sensitivity, Enhanced Cleavage and Fusogenic Activity.

Viruses. 2021-12-11

[9]
Pan-beta-coronavirus subunit vaccine prevents SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV challenge.

J Virol. 2024-9-17

[10]
SARS-CoV-2 delta (B.1.617.2) spike protein adjuvanted with Alum-3M-052 enhances antibody production and neutralization ability.

Front Public Health. 2022

引用本文的文献

[1]
SARS-CoV-2 Neutralizing Antibodies 2.0.

Viruses. 2024-11-19

本文引用的文献

[1]
A trivalent protein-based pan-Betacoronavirus vaccine elicits cross-neutralizing antibodies against a panel of coronavirus pseudoviruses.

NPJ Vaccines. 2024-7-22

[2]
Pseudoviruses, a safer toolbox for vaccine development against enveloped viruses.

Expert Rev Vaccines. 2024

[3]
A Recombinant Protein XBB.1.5 RBD/Alum/CpG Vaccine Elicits High Neutralizing Antibody Titers against Omicron Subvariants of SARS-CoV-2.

Vaccines (Basel). 2023-10-1

[4]
Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro.

Viruses. 2023-4-15

[5]
Comparative analysis of the neutralizing activity against SARS-CoV-2 Wuhan-Hu-1 strain and variants of concern: Performance evaluation of a pseudovirus-based neutralization assay.

Front Immunol. 2022

[6]
Overview of Neutralization Assays and International Standard for Detecting SARS-CoV-2 Neutralizing Antibody.

Viruses. 2022-7-18

[7]
Broadly neutralizing antibodies target the coronavirus fusion peptide.

Science. 2022-8-12

[8]
Correlates of protection against SARS-CoV-2 infection and COVID-19 disease.

Immunol Rev. 2022-9

[9]
Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern.

Vaccine. 2022-6-9

[10]
Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies.

Microbiol Res. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索