Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.
J Biomed Mater Res B Appl Biomater. 2024 Oct;112(10):e35491. doi: 10.1002/jbm.b.35491.
To develop standardized in vitro thrombogenicity test methods for evaluating medical device materials, three platelet activation biomarkers, beta-thromboglobulin (β-TG), platelet factor 4 (PF4), soluble p-selectin (CD62P), and a plasma coagulation marker, thrombin-antithrombin complex (TAT), were investigated. Whole blood, drawn from six healthy human volunteers into Anticoagulant Citrate Dextrose Solution A was recalcified and heparinized over a concentration range of 0.5-1.5 U/mL. The blood was incubated with test materials with different thrombogenic potentials for 60 min at 37°C, using a 6 cm/mL material surface area to blood volume ratio. After incubation, the blood platelet count was measured before centrifuging the blood to prepare platelet-poor plasma (PPP) and platelet-free plasma (PFP) for enzyme-linked immunosorbent assay analysis of the biomarkers. The results show that all four markers effectively differentiated the materials with different thrombogenic potentials at heparin concentrations from 1.0 to 1.5 U/mL. When a donor-specific heparin concentration (determined by activated clotting time) was used, the markers were able to differentiate materials consistently for blood from all the donors. Additionally, using PFP instead of PPP further improved the test method's ability to differentiate the thrombogenic materials from the negative control for β-TG and TAT. Moreover, the platelet activation markers were able to detect reversible platelet activation induced by adenosine diphosphate (ADP). In summary, all three platelet activation markers (β-TG, PF4, and CD62P) can distinguish thrombogenic potentials of different materials and detect ADP-induced reversible platelet activation. Test consistency and sensitivity can be enhanced by using a donor-specific heparin concentration and PFP. The same test conditions are applicable to the measurement of coagulation marker TAT.
为了开发用于评估医疗器械材料的标准化体外血栓形成性测试方法,研究了三种血小板活化生物标志物,β-血栓球蛋白(β-TG)、血小板因子 4(PF4)、可溶性 P-选择素(CD62P)和一种血浆凝血标志物,凝血酶-抗凝血酶复合物(TAT)。将来自 6 名健康人类志愿者的全血用抗凝剂柠檬酸钠葡萄糖溶液 A 抽取,并在 0.5-1.5 U/mL 的浓度范围内重新钙化和肝素化。将血液与具有不同血栓形成潜力的测试材料在 37°C 下孵育 60 分钟,使用 6 cm/mL 材料表面积与血液体积比。孵育后,在离心血液以制备血小板贫乏血浆(PPP)和血小板无血浆(PFP)之前,测量血小板计数,用于酶联免疫吸附分析生物标志物。结果表明,所有四种标志物在肝素浓度为 1.0 至 1.5 U/mL 时,有效地区分了具有不同血栓形成潜力的材料。当使用供体特异性肝素浓度(通过激活凝血时间确定)时,标志物能够一致地区分来自所有供体的血液中的材料。此外,使用 PFP 代替 PPP 进一步提高了该测试方法区分血小板激活标志物和β-TG 和 TAT 阴性对照的血栓形成材料的能力。此外,血小板活化标志物能够检测到由二磷酸腺苷(ADP)诱导的可逆血小板活化。总之,所有三种血小板活化标志物(β-TG、PF4 和 CD62P)都可以区分不同材料的血栓形成潜力,并检测 ADP 诱导的可逆血小板活化。通过使用供体特异性肝素浓度和 PFP,可以增强测试一致性和敏感性。相同的测试条件适用于凝血标志物 TAT 的测量。