Suppr超能文献

采用 ZnO@高岭土复合材料处理水中的三卤甲烷:综合实验与模拟研究。

Management of trihalomethanes in water by ZnO@kaolinite composite: integrated experimental and modeling studies.

机构信息

Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.

Reference Laboratory for Drinking Water, Holding Company for Water and Wastewater, Cairo, Egypt.

出版信息

J Water Health. 2024 Sep;22(9):1704-1724. doi: 10.2166/wh.2024.250. Epub 2024 Sep 10.

Abstract

The adsorption of trihalomethanes (THMs) from drinking water was investigated in the current study through comparison studies of kaolinite and ZnO@kaolinite nanocomposites. The clay structural network's successful immobilization on the zincite hexagonal structure of ZnO nanoparticles' lattice layers was verified by the SEM/EDX analysis. Under the optimum conditions, the maximum removal of THMs was achieved by kaolinite and ZnO@kaolinite nanocomposites after 60 min. The adsorption performance of the ZnO@kaolinite nanocomposites was greater than that of kaolinite because the former had a larger surface area than the latter. The Freundlich isotherm model best matched the adsorption experimental data, which also reveals the existence of multilayer adsorption on a diverse surface with the greatest correlation ( = 0.956 and 0.954, respectively) for both nanoadsorbents using the pseudo-first-order (PFO), pseudo-second-order (PSO), mixed 1, 2-order (MFSO), and intraparticle diffusion (IPD) models. The mechanism by which THMs in drinking water adsorb onto nanoadsorbents was examined. This revealed that both intraparticle and film diffusion were involved in the adsorption process. Kaolinite and ZnO@kaolinite nanocomposites can be used in water treatment to remove THMs due to their great recyclable and reusable properties, even after six cycles.

摘要

本研究通过高岭石和 ZnO@高岭石纳米复合材料的对比研究,考察了饮用水中三卤甲烷(THMs)的吸附情况。SEM/EDX 分析验证了粘土结构网络成功固定在 ZnO 纳米粒子晶格层的锌矿六方结构上。在最佳条件下,高岭石和 ZnO@高岭石纳米复合材料在 60 分钟后达到了最大的 THMs 去除率。由于前者的比表面积大于后者,因此 ZnO@高岭石纳米复合材料的吸附性能大于高岭石。Freundlich 等温模型最能匹配吸附实验数据,这也表明在不同表面上存在多层吸附,对于两种纳米吸附剂,最大相关性(分别为 0.956 和 0.954),分别使用伪一级(PFO)、伪二级(PSO)、混合 1,2 级(MFSO)和颗粒内扩散(IPD)模型。研究了饮用水中 THMs 吸附到纳米吸附剂上的机理。这表明吸附过程既涉及颗粒内扩散又涉及膜扩散。由于高岭石和 ZnO@高岭石纳米复合材料具有良好的可回收和再利用性能,即使经过六次循环,也可用于水处理去除 THMs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验