Materials Department, University of California, Santa Barbara, California 93106, United States.
Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States.
Langmuir. 2024 Oct 8;40(40):21041-21051. doi: 10.1021/acs.langmuir.4c02471. Epub 2024 Sep 28.
Tau, an intrinsically disordered neuronal protein and polyampholyte with an overall positive charge, is a microtubule (MT) associated protein that binds to anionic domains of MTs and suppresses their dynamic instability. Aberrant tau-MT interactions are implicated in Alzheimer's and other neurodegenerative diseases. Here, we studied the interactions between full-length human protein tau and other negatively charged binding substrates, as revealed by differential interference contrast (DIC) and fluorescence microscopy. As a binding substrate, we chose anionic liposomes (ALs) containing either 1,2-dioleoyl--glycero-3-phosphatidylserine (DOPS, -1e) or 1,2-dioleoyl--glycero-3-phosphatidylglycerol (DOPG, -1e) mixed with zwitterionic 1,2-dioleoyl--glycero-3-phosphatidylcholine (DOPC) to mimic anionic plasma membranes of axons where tau resides. At low salt concentrations (0 to 10 mM KCl or NaCl) with minimal charge screening, reaction mixtures of tau and ALs resulted in the formation of distinct states of AL-tau complexes coexisting with liquid-liquid phase-separated tau self-coacervates arising from the polyampholytic nature of tau containing cationic and anionic domains. AL-tau complexes (i.e. tau-lipoplexes) exhibited distinct types of morphologies. This included large ∼20-30 μm tau-decorated giant vesicles with additional smaller liposomes with bound tau attached to the giant vesicles and tau-mediated finite-size assemblies of small liposomes. As the salt concentration was increased to near and above 150 mM for 1:1 electrolytes, AL-tau complexes remained stable, while tau self-coacervate droplets were found to dissolve, indicative of the breaking of (anionic/cationic) electrostatic bonds between tau chains due to increased charge screening. The findings are consistent with the hypothesis that distinct cationic domains of tau may interact with anionic lipid domains of the lumen-facing monolayer of the axon's plasma membrane, suggesting the possibility of transient yet robust interactions near relevant ionic strengths found in neurons.
tau 是一种固有无序的神经元蛋白和多聚电解质,整体带正电荷,是一种微管(MT)相关蛋白,可与 MT 的阴离子结构域结合并抑制其动态不稳定性。tau-MT 异常相互作用与阿尔茨海默病和其他神经退行性疾病有关。在这里,我们通过相差显微镜和荧光显微镜研究了全长人蛋白 tau 与其他带负电荷的结合底物之间的相互作用。作为结合底物,我们选择了阴离子脂质体(AL),其含有 1,2-二油酰基-sn-甘油-3-磷酸丝氨酸(DOPS,-1e)或 1,2-二油酰基-sn-甘油-3-磷酸甘油(DOPG,-1e)与两性离子 1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPC)混合,以模拟 tau 所在的轴突的阴离子质膜。在低盐浓度(0 至 10 mM KCl 或 NaCl)下,电荷屏蔽作用最小,tau 和 AL 的反应混合物导致 tau-AL 复合物的不同状态形成,同时由于 tau 含有阳离子和阴离子结构域的两性电解质性质,形成了液-液相分离的 tau 自凝聚物。AL-tau 复合物(即 tau-脂质体)表现出不同类型的形态。这包括带有额外较小带 tau 的结合 tau 的附着在大的约 20-30 μm tau 修饰的巨囊泡和 tau 介导的小脂质体的有限尺寸组装物的大型~20-30 μm tau 修饰的巨囊泡。随着盐浓度增加到接近和高于 1:1 电解质的 150 mM,AL-tau 复合物保持稳定,而 tau 自凝聚物液滴被发现溶解,表明由于电荷屏蔽作用增强,tau 链之间的(阴离子/阳离子)静电键被打破。这些发现与 tau 的不同阳离子结构域可能与轴突质膜面向腔的单层的阴离子脂质结构域相互作用的假设一致,这表明在神经元中发现的相关离子强度附近可能存在瞬时但强大的相互作用。