Suppr超能文献

微生境对生态修复废弃矿区噬菌体-细菌动态的影响。

Microhabitat influences on phage-bacteria dynamics in an abandoned mine for ecorestoration.

机构信息

Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Department of Environmental Studies, Ram Lal Anand College, University of Delhi, 110021, India.

Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Department of Environmental Science, Ramjas College, University of Delhi, Delhi, 110007, India.

出版信息

J Environ Manage. 2024 Nov;370:122659. doi: 10.1016/j.jenvman.2024.122659. Epub 2024 Sep 27.

Abstract

Understanding the complex interactions between bacteriophages (phages) and bacteria within varied environmental niches is critical yet underexplored for improving microbe-assisted ecological restoration. This study investigates the influence of microhabitat heterogeneity within an abandoned mine on phage-bacteria interaction patterns, focusing on Pseudomonas-enriched bacterial communities. By isolating viral communities and purifying bacteria from soils of three distinct microhabitats, we assessed the regulatory role of environmental factors on these interactions, crucial for bacterial success in environmental applications. We characterized microhabitat variability by analyzing soil particle size fractions, minerals composition, and elemental content using X-ray diffraction and energy-dispersive X-ray analyses. 16S rRNA sequencing and cross-infection assays revealed that although bacterial communities across different microhabitats are taxonomically similar, their interaction patterns with phages are distinct. Phage communities showed nonselective infectivity across soil types, while bacterial communities exhibited selective adaptation, facilitating colonization across diverse microhabitats. Minerals such as mica, kaolinite, and hematite were found to increase phage infectivity, whereas mixed-layer clay correlated with early lysis. Additionally, higher levels of iron (Fe) and potassium (K) were linked to bacterial resistance strategies. Our findings highlight the importance of understanding asymmetric adaptive strategies between bacteria and phages, driven by microhabitat heterogeneity, for enhancing microbial-mediated nature-based restoration of degraded ecosystems.

摘要

了解噬菌体(phages)与不同环境小生境中的细菌之间的复杂相互作用对于改善微生物辅助的生态恢复至关重要,但目前对此研究还不够深入。本研究调查了废弃矿山内微生境异质性对噬菌体-细菌相互作用模式的影响,重点关注富假单胞菌的细菌群落。通过从三个不同微生境的土壤中分离病毒群落并纯化细菌,我们评估了环境因素对这些相互作用的调节作用,这对于细菌在环境应用中的成功至关重要。我们通过分析土壤颗粒大小、矿物质组成和元素含量来表征微生境的变异性,使用 X 射线衍射和能量色散 X 射线分析。16S rRNA 测序和交叉感染实验表明,尽管不同微生境中的细菌群落在分类上相似,但它们与噬菌体的相互作用模式却不同。噬菌体群落对不同土壤类型具有非选择性感染性,而细菌群落表现出选择性适应性,促进了在不同微生境中的定植。发现云母、高岭石和赤铁矿等矿物质可提高噬菌体的感染力,而混合层粘土则与早期裂解有关。此外,较高水平的铁(Fe)和钾(K)与细菌的抗性策略有关。我们的研究结果强调了理解由微生境异质性驱动的细菌和噬菌体之间非对称适应性策略的重要性,这对于增强微生物介导的退化生态系统的自然恢复至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验