Suppr超能文献

主动脉夹层的几何演化:使用积分高斯曲率波动预测手术成功。

The geometric evolution of aortic dissections: Predicting surgical success using fluctuations in integrated Gaussian curvature.

机构信息

Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America.

Departments of Material Science and Engineering, Biomedical Engineering, and Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2024 Feb 2;20(2):e1011815. doi: 10.1371/journal.pcbi.1011815. eCollection 2024 Feb.

Abstract

Clinical imaging modalities are a mainstay of modern disease management, but the full utilization of imaging-based data remains elusive. Aortic disease is defined by anatomic scalars quantifying aortic size, even though aortic disease progression initiates complex shape changes. We present an imaging-based geometric descriptor, inspired by fundamental ideas from topology and soft-matter physics that captures dynamic shape evolution. The aorta is reduced to a two-dimensional mathematical surface in space whose geometry is fully characterized by the local principal curvatures. Disease causes deviation from the smooth bent cylindrical shape of normal aortas, leading to a family of highly heterogeneous surfaces of varying shapes and sizes. To deconvolute changes in shape from size, the shape is characterized using integrated Gaussian curvature or total curvature. The fluctuation in total curvature (δK) across aortic surfaces captures heterogeneous morphologic evolution by characterizing local shape changes. We discover that aortic morphology evolves with a power-law defined behavior with rapidly increasing δK forming the hallmark of aortic disease. Divergent δK is seen for highly diseased aortas indicative of impending topologic catastrophe or aortic rupture. We also show that aortic size (surface area or enclosed aortic volume) scales as a generalized cylinder for all shapes. Classification accuracy for predicting aortic disease state (normal, diseased with successful surgery, and diseased with failed surgical outcomes) is 92.8±1.7%. The analysis of δK can be applied on any three-dimensional geometric structure and thus may be extended to other clinical problems of characterizing disease through captured anatomic changes.

摘要

临床影像学是现代疾病管理的主要手段,但充分利用基于影像学的数据仍然难以实现。尽管主动脉疾病的进展始于复杂的形状变化,但仍可以通过量化主动脉大小的解剖学指标来定义。我们提出了一种基于影像学的几何描述符,该描述符受拓扑学和软物质物理学基本思想的启发,可捕捉动态形状演变。主动脉在空间中被简化为二维数学曲面,其几何形状完全由局部主曲率来描述。疾病导致偏离正常主动脉的平滑弯曲圆柱形形状,导致一系列形状和大小各异的高度异质表面。为了从尺寸中解卷积形状变化,使用积分高斯曲率或总曲率来描述形状。主动脉表面的总曲率波动(δK)通过描述局部形状变化来捕获异质形态演变。我们发现,主动脉形态的演化具有幂律定义的行为,快速增加的δK 是主动脉疾病的标志。高度病变的主动脉出现发散的δK,表明即将发生拓扑灾难或主动脉破裂。我们还表明,所有形状的主动脉尺寸(表面积或包含的主动脉体积)都按广义圆柱缩放。预测主动脉疾病状态(正常、手术成功的病变和手术失败的病变)的分类准确率为 92.8±1.7%。δK 的分析可以应用于任何三维几何结构,因此可以扩展到通过捕获解剖学变化来描述疾病的其他临床问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验