Department of Applied Health Science, Indiana University School of Public Health, 1025 E. 7th St., Bloomington, IN 47405-7109, USA.
Department of Epidemiology and Biostatistics, Indiana University School of Public Health, 1025 E. 7th St., Bloomington, IN 47405-7109, USA.
Addict Behav. 2025 Jan;160:108167. doi: 10.1016/j.addbeh.2024.108167. Epub 2024 Sep 27.
Increasing number of current cannabis users report using a vaporized form of cannabis and young adults are most likely to vape cannabis. However, the number of studies on cannabis vaping is limited, and predictors of cannabis vaping among U.S. young adults remain unclear. Previous studies on cannabis vaping have known limitations, as they (1) relied heavily on regression-based approaches that often fail to examine complex and non-linear interactive effects, (2) focused on examining cannabis vaping initiation but not on its use over multiple years, and (3) failed to account for recreational cannabis legalization (RCL) status.
This study was a secondary analysis of the restricted use files of the Population Assessment of Tobacco and Health Study, Waves 4-6 (December 2016-November 2021). A two-stage machine learning approach, which included Least Absolute Shrinkage and Selection Operator (LASSO) and Classification and Regression Tree (CART), was used to identify predictors of multi-year cannabis vaping while accounting for state-level RCL status among a representative sample of U.S. young adults.
Stratified CART created a five-terminal-node prediction model for states with RCL (split by cannabis use, cigarette use, bullying behavior, and ethnicity) and a different five-terminal-node prediction model for states without RCL (split by cannabis use, heroin use, nicotine vaping, and hookah use).
Characteristics predicting multi-year cannabis vaping appear to differ from those of cannabis vaping initiation. Results also highlight the importance of accounting for RCL status because predictors of cannabis vaping may differ for individuals living in states with and without RCL.
越来越多的当前大麻使用者报告使用汽化形式的大麻,而年轻人最有可能吸食大麻。然而,关于大麻蒸气的研究数量有限,美国年轻人吸食大麻的预测因素仍不清楚。以前关于大麻蒸气的研究存在已知的局限性,因为它们(1)严重依赖回归方法,而回归方法通常无法检查复杂和非线性的交互作用,(2)专注于检查大麻蒸气的起始,而不是多年来的使用情况,以及(3)没有考虑到娱乐用大麻合法化(RCL)的状况。
本研究是对受限使用的人口评估烟草和健康研究文件的二次分析,波 4-6(2016 年 12 月-2021 年 11 月)。采用包括最小绝对收缩和选择算子(LASSO)和分类和回归树(CART)在内的两阶段机器学习方法,根据美国年轻成年人的代表性样本,考虑到州一级的 RCL 状况,确定多年来吸食大麻的预测因素。
分层 CART 为有 RCL 的州(按大麻使用、吸烟、欺凌行为和种族划分)创建了一个五终端节点预测模型,为没有 RCL 的州(按大麻使用、海洛因使用、尼古丁蒸气和水烟使用划分)创建了另一个五终端节点预测模型。
预测多年来吸食大麻的特征似乎与吸食大麻的起始特征不同。结果还强调了考虑 RCL 状况的重要性,因为在有和没有 RCL 的州生活的个人吸食大麻的预测因素可能不同。