Saha Smita, Mandal Anirban, Ranjan Akash, Ghosh Debasish Kumar
Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, West Bengal, India.
Metabolism. 2025 Jan;162:156040. doi: 10.1016/j.metabol.2024.156040. Epub 2024 Sep 26.
Nutrient stress-responsive neuronal homeostasis relies on intricate autophagic mechanisms that modulate various organelle integrity and function. The selective autophagy of the Golgi, known as Golgiphagy, regulates secretory processes by modulating vesicle trafficking during nutrient starvation.
In this study, we explored a genetic screen of BAR-domain-containing proteins to elucidate the role of formin-binding protein 1 (FNBP1) as a Golgiphagy receptor in modulating Golgi dynamics in response to varying nutrient availability in neurons. Mapping the systems network of FNBP1 and its interacting proteins reveals the putative involvement of FNBP1 in autophagy and Golgi-associated processes. While nutrient depletion causes Golgi fragmentation, FNBP1 preferentially localizes to the fragmented Golgi membrane through its FEDYTQ motif during nutrient stress. Simultaneously, FNBP1 engages in molecular interactions with LC3B through a conserved WKQL LC3 interacting region, thereby sequestering the fragmented Golgi membrane in neuronal autophagosomes. Increased aggregation of GM130, abnormal clumping of RAB11-positive secretory granules, and enhanced senescent death of FNBP1-depleted starved neurons indicate disruptions of neuronal homeostasis under metabolic stress.
The identification of FNBP1 as a nutrient stress-responsive Golgiphagy receptor expands our insights into the molecular mechanisms underlying Golgiphagy, establishing the crosstalk between nutrient sensing and membrane tension-sensing regulatory autophagic processes of Golgi turnover in neurons.
营养应激反应性神经元稳态依赖于复杂的自噬机制,这些机制调节各种细胞器的完整性和功能。高尔基体的选择性自噬,即高尔基体自噬,通过在营养饥饿期间调节囊泡运输来调节分泌过程。
在本研究中,我们对含BAR结构域的蛋白质进行了基因筛选,以阐明formin结合蛋白1(FNBP1)作为高尔基体自噬受体在调节神经元对不同营养可用性的高尔基体动力学中的作用。绘制FNBP1及其相互作用蛋白的系统网络揭示了FNBP1在自噬和高尔基体相关过程中的推定参与。虽然营养耗竭会导致高尔基体碎片化,但在营养应激期间,FNBP1通过其FEDYTQ基序优先定位于碎片化的高尔基体膜。同时,FNBP1通过保守的WKQL LC3相互作用区域与LC3B进行分子相互作用,从而将碎片化的高尔基体膜隔离在神经元自噬体中。GM130的聚集增加、RAB11阳性分泌颗粒的异常聚集以及FNBP1缺失的饥饿神经元衰老死亡增加,表明代谢应激下神经元稳态受到破坏。
FNBP1作为营养应激反应性高尔基体自噬受体的鉴定扩展了我们对高尔基体自噬分子机制的认识,建立了营养感知与神经元中高尔基体周转的膜张力感知调节自噬过程之间的相互作用。