School of Public Health, University of Texas Health Science Center at Houston, TX, USA; Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA.
El Paso Water Utility, El Paso, TX, USA.
J Infect. 2024 Nov;89(5):106284. doi: 10.1016/j.jinf.2024.106284. Epub 2024 Sep 26.
Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study aimed to monitor the SARS-CoV-2 variant community dynamics and evolution using receptor-binding domain (RBD) amplicon sequencing of wastewater samples.
We sequenced wastewater from El Paso, Texas, over 17 months, compared the sequencing data with clinical genome data, and performed biodiversity analysis to reveal SARS-CoV-2 variant dynamics and evolution.
We identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Comparison with clinical genome sequencing data revealed earlier detection of variants and identification of unreported outbreaks. Our results also showed strong consistency with clinical data for dominant variants at the local, state, and national levels. Alpha diversity analyses revealed significant seasonal variations, with the highest diversity observed in winter. By segmenting the outbreak into lag, growth, stationary, and decline phases, we found higher variant diversity during the lag phase, likely due to lower inter-variant competition preceding outbreak growth.
Our findings underscore the importance of low transmission periods in facilitating rapid mutation and variant evolution. Our approach, integrating RBD amplicon sequencing with wastewater surveillance, demonstrates effectiveness in tracking viral evolution and understanding variant emergence, thus enhancing public health preparedness.
SARS-CoV-2 的快速进化导致了众多变体的出现,对公共卫生监测构成了重大挑战。临床基因组测序虽然有价值,但在捕捉流行变体在普通人群中的完整流行病学动态方面存在局限性。本研究旨在通过废水样本中受体结合域(RBD)扩增子测序来监测 SARS-CoV-2 变体的社区动态和进化。
我们对德克萨斯州埃尔帕索的废水进行了 17 个月的测序,将测序数据与临床基因组数据进行了比较,并进行了生物多样性分析,以揭示 SARS-CoV-2 变体的动态和进化。
我们鉴定了 91 种变体,并观察到从 BA.2 到 BA.2.12.1、BA.4&5、BQ.1 和 XBB.1.5 的优势变体的波次转变。与临床基因组测序数据的比较表明,我们能够更早地检测到变体并发现未报告的暴发。我们的结果还与当地、州和全国范围内的优势变体的临床数据具有很强的一致性。α多样性分析显示出明显的季节性变化,冬季多样性最高。通过将暴发分为滞后、增长、稳定和下降阶段,我们发现滞后阶段的变体多样性更高,这可能是由于暴发增长前不同变体之间的竞争较低。
我们的研究结果强调了低传播期在促进快速突变和变体进化方面的重要性。我们的方法,将 RBD 扩增子测序与废水监测相结合,证明了在跟踪病毒进化和理解变体出现方面的有效性,从而增强了公共卫生的准备。