结合短读和长读测序技术鉴定污水中的 SARS-CoV-2 变体。

Combining Short- and Long-Read Sequencing Technologies to Identify SARS-CoV-2 Variants in Wastewater.

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada.

出版信息

Viruses. 2024 Sep 21;16(9):1495. doi: 10.3390/v16091495.

Abstract

During the COVID-19 pandemic, the monitoring of SARS-CoV-2 RNA in wastewater was used to track the evolution and emergence of variant lineages and gauge infection levels in the community, informing appropriate public health responses without relying solely on clinical testing. As more sublineages were discovered, it increased the difficulty in identifying distinct variants in a mixed population sample, particularly those without a known lineage. Here, we compare the sequencing technology from Illumina and from Oxford Nanopore Technologies, in order to determine their efficacy at detecting variants of differing abundance, using 248 wastewater samples from various Quebec and Ontario cities. Our study used two analytical approaches to identify the main variants in the samples: the presence of signature and marker mutations and the co-occurrence of signature mutations within the same amplicon. We observed that each sequencing method detected certain variants at different frequencies as each method preferentially detects mutations of distinct variants. Illumina sequencing detected more mutations with a predominant lineage that is in low abundance across the population or unknown for that time period, while Nanopore sequencing had a higher detection rate of mutations that are predominantly found in the high abundance B.1.1.7 (Alpha) lineage as well as a higher sequencing rate of co-occurring mutations in the same amplicon. We present a workflow that integrates short-read and long-read sequencing to improve the detection of SARS-CoV-2 variant lineages in mixed population samples, such as wastewater.

摘要

在 COVID-19 大流行期间,对污水中的 SARS-CoV-2 RNA 的监测被用于追踪变异谱系的演变和出现,并评估社区中的感染水平,从而在不依赖临床检测的情况下提供适当的公共卫生应对措施。随着更多的亚谱系被发现,在混合人群样本中识别不同的变体变得更加困难,尤其是那些没有已知谱系的变体。在这里,我们比较了 Illumina 和 Oxford Nanopore Technologies 的测序技术,以确定它们在检测不同丰度的变体方面的有效性,使用了来自魁北克和安大略省不同城市的 248 个污水样本。我们的研究使用了两种分析方法来识别样本中的主要变体:特征和标记突变的存在以及同一扩增子中特征突变的共同出现。我们观察到,每种测序方法以不同的频率检测到某些变体,因为每种方法优先检测不同变体的突变。Illumina 测序检测到更多具有低丰度主导谱系的突变,或者在该时期未知的突变,而 Nanopore 测序检测到更多主要存在于高丰度 B.1.1.7(Alpha)谱系中的突变,以及同一扩增子中共同出现的突变的检测率更高。我们提出了一个工作流程,该流程集成了短读和长读测序,以提高对混合人群样本(如污水)中 SARS-CoV-2 变异谱系的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b8/11437403/1cbba712e6a0/viruses-16-01495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索