Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States.
Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
J Appl Microbiol. 2024 Oct 3;135(10). doi: 10.1093/jambio/lxae252.
Antibiotic resistance genes (ARGs) in the environment pose significant public health concerns and are influenced by conditions like temperature changes. We previously observed that resistance evolution to gentamicin and colistin affects optimal growth temperatures in Staphylococcus epidermidis isolates. Despite significant phenotype observations, the genetic basis remains unclear. We aim to identify the genetic changes linked to antibiotic resistance evolution that alter optimal growth temperature.
Using whole-genome sequencing, we sequenced the genomes of gentamicin-resistant (GEN-1, GEN-2) and colistin-resistant (COL-4, COL-6) S. epidermidis isolates. Variant analysis with the BV-BRC bioinformatics tool identified genes involved in antibiotic resistance and temperature response. We found 12 genetic variants, including two unique to GEN-2 and one in COL-4. One shared mutation was observed in GEN-1 and GEN-2, and another in COL-4 and COL-6. Five mutations were shared among all isolates related to mobile gene elements, including a transposase IS4 family, two putative transposases, and two transposase-like insertion elements.
Our findings indicate that the same genes involved in gentamicin and colistin resistance, especially those related to mobile genetic elements, may also play a crucial role in temperature response.
环境中的抗生素耐药基因(ARGs)对公共健康构成重大威胁,其受到温度变化等条件的影响。我们之前观察到,表皮葡萄球菌分离株对庆大霉素和黏菌素的耐药性进化会影响其最佳生长温度。尽管有显著的表型观察,但遗传基础仍不清楚。我们旨在确定与抗生素耐药性进化相关的遗传变化,这些变化会改变最佳生长温度。
我们使用全基因组测序,对庆大霉素耐药(GEN-1、GEN-2)和多黏菌素耐药(COL-4、COL-6)的表皮葡萄球菌分离株进行了基因组测序。使用 BV-BRC 生物信息学工具进行变异分析,确定了与抗生素耐药性和温度反应相关的基因。我们发现了 12 种遗传变异,其中 2 种仅存在于 GEN-2 中,1 种存在于 COL-4 中。GEN-1 和 GEN-2 中观察到 1 个共同突变,COL-4 和 COL-6 中观察到 1 个共同突变。所有分离株中还存在 5 个与移动基因元件相关的共同突变,包括一个转座酶 IS4 家族、两个假定转座酶和两个转座酶样插入元件。
我们的研究结果表明,参与庆大霉素和多黏菌素耐药的相同基因,特别是与移动遗传元件相关的基因,也可能在温度反应中发挥关键作用。