Nalinipriya G, Lydia E Laxmi, Sree S Rama, Nikolenko Denis, Potluri Sirisha, Ramesh Janjhyam Venkata Naga, Jayachandran Sheela
Department of Information Technology, Saveetha Engineering College, Chennai, Tamilnadu, 602 105, India.
Department of Information Technology, VR Siddhartha Engineering College(A), Siddhartha Academy of Higher Education (Deemed to be University), Vijayawada, India.
Sci Rep. 2024 Sep 28;14(1):22525. doi: 10.1038/s41598-024-71995-y.
Federated learning (FL) stimulates distributed on-device computation systems to process an optimum technique efficiency by communicating local process upgrades and global method distribution from aggregation averaging procedure. On-device FL is a standard application in wireless environments, with several mobile devices participating as nodes in the FL network. Managing extensive multi-dimensional process upgrades and resource-constrained computations in large-scale heterogeneous IoT cellular networks can be challenging. This article introduces a Lifetime Maximization using Optimal Directed Acyclic Graph Federated Learning in IoT Communication Networks (LM-ODAGFL) technique. The proposed LM-ODAGFL technique utilizes FL and metaheuristic optimization algorithms for energy-effective IoT networks. The Direct Acyclic Graph (DAG) model addresses device asynchrony in FL while minimizing additional resource usage. The Archimedes Optimization Algorithm (AOA) is designed to optimize the DAG model by reducing both user energy consumption and the training loss of the FL model. The performance validation of the LM-ODAGFL technique is performed by utilizing a series of experimentations. The obtained results of the LM-ODAGFL model demonstrate superior performance by consuming significantly less energy than SDAGFL and ESDAGFL, with values ranging from 0.373 to 0.485 kJ per round on the FMNIST-Clustered dataset and 16.27 to 20.34 kJ per round on the Poets dataset, compared to 0.000 to 1.442 kJ and 0.00 to 63.89 kJ respectively.
联邦学习(FL)通过从聚合平均过程中传递本地过程更新和全局方法分布,刺激分布式设备上计算系统以处理最佳技术效率。设备上的联邦学习是无线环境中的一种标准应用,多个移动设备作为联邦学习网络中的节点参与其中。在大规模异构物联网蜂窝网络中管理广泛的多维过程更新和资源受限的计算可能具有挑战性。本文介绍了一种在物联网通信网络中使用最优有向无环图联邦学习的寿命最大化(LM-ODAGFL)技术。所提出的LM-ODAGFL技术利用联邦学习和元启发式优化算法来实现节能的物联网网络。有向无环图(DAG)模型解决了联邦学习中的设备异步问题,同时将额外资源使用降至最低。阿基米德优化算法(AOA)旨在通过降低用户能耗和联邦学习模型的训练损失来优化DAG模型。通过一系列实验对LM-ODAGFL技术进行了性能验证。LM-ODAGFL模型获得的结果显示出卓越的性能,在FMNIST-Clustered数据集上每轮能耗明显低于SDAGFL和ESDAGFL,范围为0.373至0.485千焦,在Poets数据集上每轮能耗为16.27至20.34千焦,而SDAGFL和ESDAGFL分别为0.000至1.442千焦和0.00至63.89千焦。