Suppr超能文献

利用缩放系数整合鞘层加速和基于辐射的加速,以定制辐射主导的混合加速。

Integrating sheath and radiation-based acceleration using scaling coefficients for tailoring radiation dominant hybrid acceleration.

作者信息

Kumar Harihara Sudhan, Takahashi Masayuki, Kuramitsu Yasuhiro, Ohnishi Naofumi

机构信息

Department of Aerospace Engineering, Tohoku University, 6-6-01 Aramakiazaaoba, Aoba-ku, Sendai, 980-8579, Japan.

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

Sci Rep. 2024 Sep 28;14(1):22531. doi: 10.1038/s41598-024-72623-5.

Abstract

An optimal target condition for generating GeV-energy ions with linearly polarized laser pulse is revealed by a hybrid acceleration theory based on the fractional contributions of the target normal sheath acceleration (TNSA) and the radiation pressure acceleration (RPA) mechanisms in the RPA-dominant regime. The theory is established with two scaling coefficients, which scale the TNSA and RPA velocities, and are sophisticated through two-dimensional particle-in-cell simulations where GeV-energy ions are obtained by RPA-dominant hybrid acceleration. By imposing limits on the scaling coefficients, three separate acceleration regions are obtained including a RPA-dominant acceleration region, which is optimal to generate GeV-energy ions. The past experiment/simulation results are in good agreement with the acceleration regions obtained. This RPA-dominant region is narrower than previously reported, and this region becomes even narrower with increasing material density.

摘要

基于在辐射压力加速(RPA)主导区域中靶面法线鞘层加速(TNSA)和辐射压力加速(RPA)机制的分数贡献的混合加速理论,揭示了用线偏振激光脉冲产生GeV能量离子的最佳靶条件。该理论通过两个缩放系数建立,这两个系数缩放TNSA和RPA速度,并通过二维粒子模拟进行完善,在该模拟中通过RPA主导的混合加速获得GeV能量离子。通过对缩放系数施加限制,获得了三个独立的加速区域,包括一个RPA主导的加速区域,该区域对于产生GeV能量离子是最佳的。过去的实验/模拟结果与获得的加速区域非常吻合。这个RPA主导区域比之前报道的更窄,并且随着材料密度的增加,该区域变得更窄。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c41/11438887/e5d2e6c79e8a/41598_2024_72623_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验