文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用超顺磁氧化铁纳米颗粒增强临床超低频磁共振成像中的器官和血管对比度。

Enhancing organ and vascular contrast in preclinical ultra-low field MRI using superparamagnetic iron oxide nanoparticles.

机构信息

A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Commun Biol. 2024 Sep 28;7(1):1197. doi: 10.1038/s42003-024-06884-1.


DOI:10.1038/s42003-024-06884-1
PMID:39342051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11438998/
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are characterized by their exceptional susceptibility and relaxivity at ultra-low field (ULF) regimes, make them a promising contrast agent (CA) for ULF MRI. Despite their distinct advantages, the translation of these properties into clinically valuable image contrast in ULF MRI remains underexplored. In this study, we investigate the use of SPIONs to generate in vivo MRI contrast at 6.5 mT within the organs and vascular system of rodents. This investigation includes comprehensive SPION characterization and phantom imaging experiments to validate the utility of SPIONs to produce positive image contrast and to facilitate phase-sensitive imaging at ULF. Optimized balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) MRI sequences are used to generate in vivo contrast by leveraging the distinctive properties of SPIONs at ULF. Imaging studies in rodents reveal positive organ contrast attainable in magnitude images, and MRI phase maps can be used to visualize the vascular system. This work demonstrates the effectiveness of SPIONs in enhancing preclinical organ and vascular imaging at ULF; it bridges the gap between the study of the distinctive physical properties of SPIONs and the demonstration of in vivo image contrast.

摘要

超顺磁性氧化铁纳米颗粒(SPIONs)的特点是在超低场(ULF)下具有异常的磁化率和弛豫率,使它们成为 ULF MRI 的有前途的对比剂(CA)。尽管具有明显的优势,但将这些特性转化为 ULF MRI 中具有临床价值的图像对比度仍然没有得到充分探索。在这项研究中,我们研究了使用 SPIONs 在 6.5 mT 下在啮齿动物的器官和血管系统中产生体内 MRI 对比度。这项研究包括对 SPIONs 进行全面的特性表征和体模成像实验,以验证 SPIONs 产生阳性图像对比度并促进 ULF 下的相敏成像的实用性。优化的平衡稳态自由进动(bSSFP)和扰相梯度回波(SPGR)MRI 序列可利用 SPIONs 在 ULF 下的独特特性产生体内对比度。在啮齿动物中的成像研究显示,在幅度图像中可以获得阳性器官对比度,并且可以使用 MRI 相位图来可视化血管系统。这项工作证明了 SPIONs 在增强 ULF 下的临床前器官和血管成像中的有效性;它弥合了 SPIONs 的独特物理特性研究与体内图像对比度演示之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7cde05175314/42003_2024_6884_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/1bab3e19b5ed/42003_2024_6884_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/1ab6ea58d086/42003_2024_6884_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/91dc85d17427/42003_2024_6884_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7f66ce8bf876/42003_2024_6884_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/4af131bc6ab6/42003_2024_6884_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7bcc7eb1a5bd/42003_2024_6884_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/6962d51f0622/42003_2024_6884_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/8d0e920e157f/42003_2024_6884_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7cde05175314/42003_2024_6884_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/1bab3e19b5ed/42003_2024_6884_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/1ab6ea58d086/42003_2024_6884_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/91dc85d17427/42003_2024_6884_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7f66ce8bf876/42003_2024_6884_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/4af131bc6ab6/42003_2024_6884_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7bcc7eb1a5bd/42003_2024_6884_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/6962d51f0622/42003_2024_6884_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/8d0e920e157f/42003_2024_6884_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/11438998/7cde05175314/42003_2024_6884_Fig9_HTML.jpg

相似文献

[1]
Enhancing organ and vascular contrast in preclinical ultra-low field MRI using superparamagnetic iron oxide nanoparticles.

Commun Biol. 2024-9-28

[2]
High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles.

Sci Adv. 2020-7-17

[3]
Iron oxide nanoparticles as positive T contrast agents for low-field magnetic resonance imaging at 64 mT.

Sci Rep. 2023-7-17

[4]
Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

Nanotheranostics. 2020

[5]
A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI.

Magn Reson Imaging. 2018-6

[6]
Large T contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI.

Sci Rep. 2018-8-8

[7]
Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.

Pharm Res. 2015-11

[8]
Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.

Nanomedicine (Lond). 2019-5-3

[9]
Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells.

Int J Nanomedicine. 2012-7-6

[10]
Transferrin-Conjugated Superparamagnetic Iron Oxide Nanoparticles as In Vivo Magnetic Resonance Imaging Contrast Agents.

J Nanosci Nanotechnol. 2020-4-1

引用本文的文献

[1]
Current perspectives and global trends of nanotechnology in advanced breast cancer: a bibliometric and visualized analysis.

Discov Oncol. 2025-8-29

[2]
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges.

Pharmaceuticals (Basel). 2025-7-22

[3]
Recovery and Characterization of Tissue Properties from Magnetic Resonance Fingerprinting with Exchange.

J Imaging. 2025-5-20

[4]
Refining Lung Cancer Brain Metastasis Models for Spatiotemporal Dynamic Research and Personalized Therapy.

Cancers (Basel). 2025-5-7

[5]
Enhanced detection of glioblastoma vasculature with superparamagnetic iron oxide nanoparticles and MRI.

Sci Rep. 2025-4-24

[6]
Nanomaterials in gastric cancer: pioneering precision medicine for diagnosis, therapy, and prevention.

Med Oncol. 2025-3-6

本文引用的文献

[1]
SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer.

Biomed Microdevices. 2024-2-7

[2]
Brain imaging with portable low-field MRI.

Nat Rev Bioeng. 2023-9

[3]
Iron oxide nanoparticles as positive T contrast agents for low-field magnetic resonance imaging at 64 mT.

Sci Rep. 2023-7-17

[4]
Low-field MRI: A report on the 2022 ISMRM workshop.

Magn Reson Med. 2023-10

[5]
Identification of White Matter Hyperintensities in Routine Emergency Department Visits Using Portable Bedside Magnetic Resonance Imaging.

J Am Heart Assoc. 2023-6-6

[6]
Low-field MRI: Clinical promise and challenges.

J Magn Reson Imaging. 2023-1

[7]
Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit.

Arch Dis Child Fetal Neonatal Ed. 2023-1

[8]
Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage.

Nat Commun. 2021-8-25

[9]
Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction.

Sci Rep. 2021-4-15

[10]
An Ultrahigh-Field-Tailored T -T Dual-Mode MRI Contrast Agent for High-Performance Vascular Imaging.

Adv Mater. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索