Suppr超能文献

深度学习图像重建提高低场 MRI 的信噪。

Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.

Harvard Medical School, Boston, MA, 02115, USA.

出版信息

Sci Rep. 2021 Apr 15;11(1):8248. doi: 10.1038/s41598-021-87482-7.

Abstract

Recent years have seen a resurgence of interest in inexpensive low magnetic field (< 0.3 T) MRI systems mainly due to advances in magnet, coil and gradient set designs. Most of these advances have focused on improving hardware and signal acquisition strategies, and far less on the use of advanced image reconstruction methods to improve attainable image quality at low field. We describe here the use of our end-to-end deep neural network approach (AUTOMAP) to improve the image quality of highly noise-corrupted low-field MRI data. We compare the performance of this approach to two additional state-of-the-art denoising pipelines. We find that AUTOMAP improves image reconstruction of data acquired on two very different low-field MRI systems: human brain data acquired at 6.5 mT, and plant root data acquired at 47 mT, demonstrating SNR gains above Fourier reconstruction by factors of 1.5- to 4.5-fold, and 3-fold, respectively. In these applications, AUTOMAP outperformed two different contemporary image-based denoising algorithms, and suppressed noise-like spike artifacts in the reconstructed images. The impact of domain-specific training corpora on the reconstruction performance is discussed. The AUTOMAP approach to image reconstruction will enable significant image quality improvements at low-field, especially in highly noise-corrupted environments.

摘要

近年来,由于磁体、线圈和梯度系统设计的进步,人们对廉价低磁场(<0.3T)MRI 系统重新产生了兴趣。这些进展大多集中在改进硬件和信号采集策略上,而在利用先进的图像重建方法来提高低场下可达到的图像质量方面关注较少。我们在这里描述了使用端到端深度神经网络方法(AUTOMAP)来提高高度噪声污染的低场 MRI 数据的图像质量。我们将这种方法的性能与另外两种最先进的去噪管道进行了比较。我们发现,AUTOMAP 提高了在两个非常不同的低场 MRI 系统上采集的数据的图像重建:在 6.5mT 下采集的人脑数据,以及在 47mT 下采集的植物根数据,分别显示出通过傅里叶重建获得的 SNR 增益提高了 1.5 到 4.5 倍和 3 倍。在这些应用中,AUTOMAP 优于两种不同的基于图像的去噪算法,并抑制了重建图像中的噪声样尖峰伪影。还讨论了特定于域的训练语料库对重建性能的影响。AUTOMAP 图像重建方法将在低场下实现显著的图像质量改善,特别是在高度噪声污染的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9304/8050246/1045d67cec55/41598_2021_87482_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验