College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China.
School of Information and Communication Engineering, Hainan University, Haikou 570100, China.
Food Chem. 2025 Jan 15;463(Pt 3):141393. doi: 10.1016/j.foodchem.2024.141393. Epub 2024 Sep 24.
Peanuts are highly susceptible to contamination by aflatoxins, posing a significant threat to human health. This study aims to enhance the accuracy of pixel-level aflatoxin detection in hyperspectral images using an optimized deep learning method. This study developed a CNN-BiLSTM fusion model optimized by the Multi-Verse Optimizer (MVO) algorithm, specifically designed to detect aflatoxins with high precision. The optimized CNN-BiLSTM model was fine-tuned using aflatoxin spectral data at varying concentrations. The results indicate that the fine-tuned MVO-CNN-BiLSTM model achieved the best performance, with a validation accuracy of 94.92 % and a recall rate of 95.59 %. The accuracy of this model is 6.93 % and 3.6 % higher than machine learning methods such as SVM and AdaBoost, respectively. Additionally, it is 4.18 % and 3.08 % higher than deep learning methods such as CNN and the CNN-LSTM fusion model, respectively. This method enhances pixel-level aflatoxin detection accuracy, supporting the development of online detection devices.
花生极易受到黄曲霉毒素的污染,对人类健康构成重大威胁。本研究旨在利用优化的深度学习方法提高高光谱图像中像素级黄曲霉毒素检测的准确性。本研究开发了一种经过多宇宙优化器(MVO)算法优化的 CNN-BiLSTM 融合模型,专门用于高精度检测黄曲霉毒素。使用不同浓度的黄曲霉毒素光谱数据对优化的 CNN-BiLSTM 模型进行微调。结果表明,经过微调的 MVO-CNN-BiLSTM 模型表现最佳,验证准确率为 94.92%,召回率为 95.59%。该模型的准确率分别比 SVM 和 AdaBoost 等机器学习方法高 6.93%和 3.6%,比 CNN 和 CNN-LSTM 融合模型等深度学习方法分别高 4.18%和 3.08%。该方法提高了像素级黄曲霉毒素检测的准确性,为在线检测设备的开发提供了支持。