Suppr超能文献

通过原位部分转化构建S型异质结CsBiBr/BiOBr以促进光催化固氮

Constructing S-scheme heterojunction CsBiBr/BiOBr via in-situ partial conversion to boost photocatalytic N fixation.

作者信息

Ren An-Di, Liu Zhao-Lei, Yuan Su-Xian, Zhang Min, Lu Tong-Bu

机构信息

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt C):1203-1212. doi: 10.1016/j.jcis.2024.09.188. Epub 2024 Sep 24.

Abstract

The judicious construction of interfaces with swift charge communication to enhance the utilization efficiency of photogenerated carriers is a viable strategy for boosting the photocatalytic performance of heterojunctions. Herein, an in-situ partial conversion strategy is reported for decorating lead-free halide perovskite CsBiBr nanocrystals onto BiOBr hollow nanotube, resulting in the formation of an S-scheme heterojunction CsBiBr/BiOBr. This unique in-situ growth approach imparts a closely contacted interface to the CsBiBr/BiOBr heterojunction, facilitating interfacial electron transfer and spatial charge separation compared to a counterpart (CsBiBr:BiOBr) fabricated via traditional electrostatic self-assembly. Additionally, the establishment of an S-scheme charge transfer pathway preserves the robust redox capability of photogenerated carriers. Furthermore, the free electron transfer from CsBiBr to BiOBr promotes the activation of the NN bond and diminishes the energy barrier associated with the rate-determining step in the N reduction process. Consequently, the CsBiBr/BiOBr heterojunction exhibits highly selective photocatalytic N reduction to NH (nearly 100 %) at a rate of 130 μmol g h under simulated sunlight (100 mW cm), surpassing BiOBr, CsBiBr, and CsBiBr:BiOBr by factors of 6, 4, and 2, respectively.

摘要

构建具有快速电荷通信的界面以提高光生载流子的利用效率,是提升异质结光催化性能的可行策略。在此,报道了一种原位部分转化策略,用于将无铅卤化物钙钛矿CsBiBr纳米晶体修饰在BiOBr空心纳米管上,从而形成S型异质结CsBiBr/BiOBr。这种独特的原位生长方法赋予了CsBiBr/BiOBr异质结紧密接触的界面,与通过传统静电自组装制备的对应物(CsBiBr:BiOBr)相比,促进了界面电子转移和空间电荷分离。此外,S型电荷转移途径的建立保留了光生载流子强大的氧化还原能力。此外,从CsBiBr到BiOBr的自由电子转移促进了N≡N键的活化,并降低了与N还原过程中速率决定步骤相关的能垒。因此,CsBiBr/BiOBr异质结在模拟太阳光(100 mW/cm²)下以130 μmol g⁻¹ h⁻¹的速率表现出对光催化N还原为NH₃的高度选择性(近100%),分别比BiOBr、CsBiBr和CsBiBr:BiOBr高出6倍、4倍和2倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验