Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry , Halle 06120, Germany.
Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg , Halle 06120, Germany.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230355. doi: 10.1098/rstb.2023.0355. Epub 2024 Sep 30.
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
化学赋予磷及其最氧化形式无机磷酸盐在所有生命领域推动生物能量学和新陈代谢的独特作用,这可能是从地球前生物期开始的。对于植物来说,获得重要的矿物质营养会深刻影响其生长、发育和活力,从而限制自然生态系统中的净初级生产力和现代农业中的作物产量。与其他主要生物元素不同,磷在地壳中的低丰度和不均匀分布是由于磷的宇宙化学和地球化学的特殊性造成的。在这里,我们追溯了元素的化学演化、地球化学磷循环及其在地球历史上的加速过程,直到现在(人类世)以及陆地植物的演化和兴起。我们强调了磷的生物化学和生物过程的移动和获取,这些过程首先在细菌中进化,在真菌和藻类中得到改进,并在陆地植物的殖民过程中扩展为强大的磷勘探策略。此外,我们回顾了从细菌到陆地植物的基因和分子网络的进化,这些网络监测细胞内和细胞外磷的可用性,并协调对波动磷供应的适当反应和调整。最后,我们讨论了人类活动扰乱的现代全球磷循环以及未来面临的挑战。本文是主题为“植物代谢的进化和多样性”的一部分。