Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand.
School of Mathematics and Statistics, Center for Mathematical Sciences & Hubei Key Lab of Engineering Modelling and Scientific, Huazhong University of Science and Technology, Wuhan, China.
J Theor Biol. 2024 Dec 7;595:111954. doi: 10.1016/j.jtbi.2024.111954. Epub 2024 Sep 27.
The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin-myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
内质网(ER)网络在几何形状上具有高度复杂性和高度动态性,并经历广泛的重塑和整体流动。已知 ER 动力学是由肌动球蛋白依赖的过程驱动的。ER 通过细胞质的运动将对细胞质施加力,从而引起流动。然而,ER 也将明显地被细胞质的整体流动被动运输。我们考虑了复杂的 ER 网络结构,并提出了肌球蛋白样马达、肌动蛋白排列和 ER 网络动力学之间的正反馈机制,以解释 ER 流动的出现。使用这个模型,我们证明了 ER 流动可能是这三种相互作用的一个涌现特征,而持久点密度可能是 ER 流动出现的关键驱动力。