Dept. of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada.
Dept. of Plant Sciences, McGill Univ., Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
Protein Expr Purif. 2025 Feb;226:106612. doi: 10.1016/j.pep.2024.106612. Epub 2024 Sep 27.
Plant glutamate decarboxylase (GAD) is a Ca-calmodulin (CaM) activated enzyme that produces γ-aminobutyrate (GABA) as the first committed step of the GABA shunt. Our prior research established that in vivo phosphorylation of AtGAD1 (AT5G17330) occurs at multiple N-terminal serine residues following Pi resupply to Pi-starved cell cultures of the model plant Arabidopsis thaliana. The aim of the current investigation was to purify recombinant AtGAD1 (rAtGAD1) following its expression in Escherichia coli to facilitate studies of the impact of phosphorylation on its kinetic properties. However, in vitro proteolytic truncation of an approximate 5 kDa polypeptide from the C-terminus of 59 kDa rAtGAD1 subunits occurred during purification. Immunoblotting demonstrated that most protease inhibitors or cocktails that we tested were ineffective in suppressing this partial rAtGAD1 proteolysis. Although the thiol modifiers N-ethylmaleimide or 2,2-dipyridyl disulfide negated rAtGAD1 proteolysis, they also abolished its GAD activity. This indicates that an essential -SH group is needed for catalysis, and that rAtGAD1 is susceptible to partial degradation either by an E. coli cysteine endopeptidase, or possibly via autoproteolytic activity. The inclusion of exogenous Ca/CaM facilitated the purification of non-proteolyzed rAtGAD1 to a specific activity of 27 (μmol GABA produced/mg) at optimal pH 5.8, while exhibiting an approximate 3-fold activation by Ca/CaM at pH 7.3. By contrast, the purified partially proteolyzed rAtGAD1 was >40 % less active at both pH values, and only activated 2-fold by Ca/CaM at pH 7.3. These results emphasize the need to diagnose and prevent partial proteolysis before conducting kinetic studies of purified regulatory enzymes.
植物谷氨酸脱羧酶(GAD)是一种 Ca-钙调蛋白(CaM)激活酶,它产生γ-氨基丁酸(GABA)作为 GABA 分流的第一步。我们之前的研究表明,在模型植物拟南芥的 Pi 饥饿细胞培养物中再供应 Pi 后,AtGAD1(AT5G17330)体内磷酸化发生在多个 N 端丝氨酸残基上。目前研究的目的是在大肠杆菌中表达重组 AtGAD1(rAtGAD1)后纯化它,以方便研究磷酸化对其动力学特性的影响。然而,在纯化过程中,从 59 kDa rAtGAD1 亚基的 C 末端发生了大约 5 kDa 多肽的体外蛋白水解截断。免疫印迹表明,我们测试的大多数蛋白酶抑制剂或鸡尾酒都不能有效抑制这种部分 rAtGAD1 蛋白水解。尽管硫醇修饰剂 N-乙基马来酰亚胺或 2,2-二吡啶二硫代物消除了 rAtGAD1 蛋白水解,但它们也使 rAtGAD1 的 GAD 活性丧失。这表明一个必需的 -SH 基团是催化所必需的,并且 rAtGAD1 容易受到大肠杆菌半胱氨酸内肽酶的部分降解,或者可能通过自蛋白水解活性。外源性 Ca/CaM 的加入有助于非蛋白水解的 rAtGAD1 的纯化,使其在最佳 pH 5.8 时的比活性达到 27(μmol GABA 产生/mg),而在 pH 7.3 时,Ca/CaM 使比活性增加约 3 倍。相比之下,纯化的部分蛋白水解 rAtGAD1 在两种 pH 值下的活性降低了>40%,并且仅在 pH 7.3 时 Ca/CaM 使活性增加 2 倍。这些结果强调了在进行纯化调节酶的动力学研究之前,需要诊断和防止部分蛋白水解。