Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
Sci Total Environ. 2024 Dec 1;954:176538. doi: 10.1016/j.scitotenv.2024.176538. Epub 2024 Sep 27.
Human activities are the main cause of arsenic contamination in the environment and water resources, being the mining industry an important source of arsenic contamination because this element is released into the environment in solid, liquid, and gaseous wastes. Currently, several physical and chemical processes could be used for the removal of arsenic in water, but these alternatives depend on the concentration of arsenic. At low concentrations (nanograms or micrograms per liter) arsenic can be removed by membrane technologies. When arsenic is at high concentrations (milligrams or grams per liter), treatment options are reduced to inefficient processes of high economic cost and poor chemical stability of the precipitate, returning consequently arsenic into the environment. Biomineralization is a biological process where microorganisms induce the formation of minerals. This bioprocess has gained interest in recent years for the removal of contaminants from liquid effluents. This review details the harmful effects of arsenic on the health and exposes the relevance of arsenic contamination related to mining activity, whose effluents contain high concentration of arsenic. It also describes and analyzes advances in arsenic treatment strategies through biomineralization using microorganisms, such as sulfate-reducing bacteria, iron- and manganese-oxidizing microorganisms, and ureolytic microorganisms, detailing aspects of effectiveness, applicability, chemical stability of biominerals and future perspectives in their industrial application. To our knowledge, there are no previous reports compiling, analyzing, and explaining in detail the biomineralization of arsenic as a single element. The importance of this review is to deliver in a summarized and systematized way the main aspects and perspectives on the application of microorganisms to remove toxic elements, such as arsenic, from effluents.
人类活动是环境和水资源砷污染的主要原因,采矿业是砷污染的重要来源,因为该元素以固、液、气废物的形式释放到环境中。目前,有几种物理和化学过程可用于去除水中的砷,但这些替代方法取决于砷的浓度。在低浓度(纳克或微克/升)下,砷可以通过膜技术去除。当砷浓度较高(毫克或克/升)时,处理方法可选择减少到低效的高经济成本和较差的沉淀化学稳定性的过程,从而导致砷重新进入环境。生物矿化是一种微生物诱导矿物形成的生物过程。近年来,该生物过程因其从液体废水中去除污染物的能力而受到关注。本综述详细介绍了砷对健康的有害影响,并揭示了与采矿活动相关的砷污染的相关性,其废水含有高浓度的砷。它还描述和分析了通过使用微生物(如硫酸盐还原菌、铁和锰氧化微生物以及脲酶微生物)进行生物矿化来处理砷的策略的进展,详细介绍了生物矿化的有效性、适用性、化学稳定性和未来在工业应用中的前景。据我们所知,目前尚无关于将砷作为单一元素进行生物矿化的综合、分析和详细报告。本综述的重要性在于以总结和系统的方式提供有关应用微生物从废水中去除有毒元素(如砷)的主要方面和观点。