Li Jiali, Zhang Jinkai, Hou Yuxin, Suo Jinquan, Liu Jianchuan, Li Hui, Qiu Shilun, Valtchev Valentin, Fang Qianrong, Liu Xiaoming
College of Chemistry, Jilin University, Changchun, 130012, China.
Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412452. doi: 10.1002/anie.202412452. Epub 2024 Nov 7.
Organic polymers are considered promising candidates for next-generation green electrode materials in lithium-ion batteries (LIBs). However, achieving long cycling stability and capacity retention at high current densities remains a significant challenge due to weak structural stability and low conductivity. In this study, we report the synthesis of two novel polyimide covalent organic frameworks (PI-COFs), COF-JLU85 and COF-JLU86, by combining truxenone-based triamine and linear acid anhydride through polymerization. These PI-COFs feature layers with pore channels embedded with 18 carbonyl groups, facilitating rapid lithium-ion diffusion and enhancing structural stability under high current densities. Compared to previously reported organic polymer materials, COF-JLU86 demonstrates the excellent performance at high current densities, with an impressive specific capacity of 1161.1 mA h g at 0.1 A g, and outstanding cycling stability, retaining 1289.8 mA h g at 2 A g after 1500 cycles and 401.1 mA h g at 15 A g after 10000 cycles. Additionally, in situ infrared spectroscopy and density functional theory (DFT) calculations provide mechanistic insights, revealing that the high concentration of carbonyl redox-active sites and the optimized electronic structure contribute to the excellent electrochemical performance. These results highlight the potential of PI-COFs as high-performance organic electrode materials for LIBs, offering a promising solution to the challenges of long-term stability and capacity retention at high current densities.
有机聚合物被认为是锂离子电池(LIBs)下一代绿色电极材料的有前途的候选者。然而,由于结构稳定性弱和导电性低,在高电流密度下实现长循环稳定性和容量保持率仍然是一个重大挑战。在本研究中,我们报告了通过三聚茚酮基三胺和线性酸酐聚合反应合成了两种新型聚酰亚胺共价有机框架(PI-COFs),即COF-JLU85和COF-JLU86。这些PI-COFs具有嵌入18个羰基的孔道层,有利于锂离子快速扩散,并在高电流密度下增强结构稳定性。与先前报道的有机聚合物材料相比,COF-JLU86在高电流密度下表现出优异的性能,在0.1 A g时具有令人印象深刻的比容量1161.1 mA h g,并且具有出色的循环稳定性,在1500次循环后在2 A g时保持1289.8 mA h g,在10000次循环后在15 A g时保持401.1 mA h g。此外,原位红外光谱和密度泛函理论(DFT)计算提供了机理见解,表明高浓度的羰基氧化还原活性位点和优化的电子结构有助于优异的电化学性能。这些结果突出了PI-COFs作为LIBs高性能有机电极材料的潜力,为解决高电流密度下的长期稳定性和容量保持率挑战提供了一个有前途的解决方案。