Li Ning, Ma Yong, Ma Jiafeng, Chang Qing, Fan Xiangqian, Liu Lei, Xue Chaorui, Hao Caihong, Zhang Huayang, Hu Shengliang, Wang Shaobin
School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan, 030051, China.
Chair for Photonics and Optoelectronics, Faculty of Physics, Nano-Institute Munich, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539, Munich, Germany.
Small. 2024 Dec;20(49):e2406609. doi: 10.1002/smll.202406609. Epub 2024 Sep 29.
MoS/ZnInS flower-like heterostructures into porous carbon (PC@MoS/ZIS) are embedded. This ternary heterostructure demonstrates enhanced light absorption across a broad spectral range from 200 to 2500 nm. It features both Type-II and S-scheme dual heterojunction interfaces, which facilitate the generation, separation, and transfer of photoinduced carriers. The PC enveloped by MoS/ZIS composite microspheres serves as a photothermal source, providing additional energy to the carriers. This process accelerates charge separation and migration, enhancing photothermal-assisted photocatalytic H evolution. The optimal H evolution rate for PC@MoS/ZIS reaches an impressive 18.79 mmol g h, with an apparent quantum efficiency of 14.1% at 400 nm. This work presents a promising approach for effectively integrating multicomponent heterostructures with photothermal effects, offering innovative strategies for efficient solar energy utilization and conversion.
将MoS/ZnInS花状异质结构嵌入多孔碳(PC@MoS/ZIS)中。这种三元异质结构在200至2500纳米的宽光谱范围内表现出增强的光吸收。它具有II型和S型双异质结界面,有利于光生载流子的产生、分离和转移。被MoS/ZIS复合微球包裹的PC作为光热源,为载流子提供额外的能量。这个过程加速了电荷的分离和迁移,增强了光热辅助光催化析氢。PC@MoS/ZIS的最佳析氢速率达到了令人印象深刻的18.79 mmol g⁻¹ h⁻¹,在400纳米处的表观量子效率为14.1%。这项工作提出了一种将多组分异质结构与光热效应有效整合的有前景的方法,为高效太阳能利用和转换提供了创新策略。