Siems Sophie B, Gargareta Vasiliki-Ilya, Schadt Leonie C, Daguano Gastaldi Vinicius, Jung Ramona B, Piepkorn Lars, Casaccia Patrizia, Sun Ting, Jahn Olaf, Werner Hauke B
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Glia. 2025 Jan;73(1):38-56. doi: 10.1002/glia.24614. Epub 2024 Sep 30.
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
构成髓磷脂的分子对于轴突/髓磷脂单元的完整性至关重要,因此对于冲动传播的速度和精确性也至关重要。在中枢神经系统(CNS)中,少突胶质细胞衍生的髓磷脂的蛋白质组成在进化过程中发生了分化,与外周神经系统(PNS)中的不同。在此,我们假设中枢神经系统的髓磷脂蛋白质组在同一物种内也存在差异。因此,我们使用定量质谱法比较了从三个发育时间点的小鼠脑、雄性和雌性小鼠脑以及四个中枢神经系统区域纯化得到的髓磷脂。我们发现,在所有测试条件下,大多数结构性髓磷脂蛋白的丰度大致相似。然而,多种其他蛋白质的丰度随时间有显著差异,这意味着髓磷脂蛋白质组在出生后18天(P18)到75天之间成熟,然后至少在6个月龄之前保持相对稳定。髓磷脂成熟涉及与髓鞘生长和包裹相关的细胞骨架相关蛋白减少,同时稳定成熟髓磷脂的septin细丝的所有亚基以及多种可能发挥保护功能的其他蛋白质增加。在后者中,醌二氢蝶啶还原酶(QDPR)成为成熟少突胶质细胞和髓磷脂的高度特异性标志物。相反,雄性和雌性小鼠的髓磷脂蛋白质组基本相似。在所分析的四个中枢神经系统区域中,我们注意到脊髓髓磷脂中HCN2通道的丰度相对较高,这对于特别长的髓鞘是必需的。这些发现表明,中枢神经系统的髓鞘形成涉及髓磷脂蛋白质组成的发育成熟以及区域差异,但没有证据表明存在性别二态性。