Ohayon David, Quek Glenn, Yip Benjamin Rui Peng, Lopez-Garcia Fernando, Ng Pei Rou, Vázquez Ricardo Javier, Andreeva Daria V, Wang Xuehang, Bazan Guillermo C
Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore.
Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore.
Adv Mater. 2024 Nov;36(47):e2410512. doi: 10.1002/adma.202410512. Epub 2024 Sep 30.
Environmentally-benign materials play a pivotal role in advancing the scalability of energy storage devices. In particular, conjugated polymers constitute a potentially greener alternative to inorganic- and carbon-based materials. One challenge to wider implementation is the scarcity of n-doped conducting polymers to achieve full cells with high-rate performance. Herein, this work demonstrates the use of a self-doped n-doped conjugated polymer, namely poly(benzodifurandione) (PBDF), for fabricating aqueous supercapacitors. PBDF demonstrates a specific capacitance of 202 ± 3 F g, retaining 81% of the initial performance over 5000 cycles at 10 A g in 2 m NaCl . PBDF demonstrates rate performances of up to 100 and 50 A g at 1 and 2 mg cm, respectively. Electrochemical impedance analysis reveals a surface-mediated charge storage mechanism. Improvements can be achieved by adding reduced graphene oxide (rGO), thereby obtaining a specific capacitance of 288 ± 8 F g and high-rate operation (270 A g). The performance of PBDF is examined in symmetric and asymmetric membrane-less cells, demonstrating high-rate performance, while retaining 83% of the initial capacitance after 100 000 cycles at 10 A g. PBDF thus offers new prospects for energy storage applications, showcasing both desirable performance and stability without the need for additives or binders and relying on environmentally friendly solutions.
环境友好型材料在推动储能设备的规模化发展中起着关键作用。特别是,共轭聚合物构成了一种相对于无机和碳基材料而言潜在更环保的替代品。更广泛应用面临的一个挑战是缺乏n掺杂导电聚合物来实现具有高倍率性能的全电池。在此,这项工作展示了使用一种自掺杂的n掺杂共轭聚合物,即聚(苯并二呋喃二酮)(PBDF)来制造水系超级电容器。PBDF在2 m NaCl中,在10 A g下表现出202±3 F g的比电容,在5000次循环后仍保持初始性能的81%。PBDF在1和2 mg cm时分别表现出高达100和50 A g的倍率性能。电化学阻抗分析揭示了一种表面介导的电荷存储机制。通过添加还原氧化石墨烯(rGO)可以实现性能提升,从而获得288±8 F g的比电容和高倍率运行(270 A g)。在对称和非对称无膜电池中对PBDF的性能进行了测试,结果表明其具有高倍率性能,在10 A g下经过100000次循环后仍保持初始电容的83%。因此,PBDF为储能应用提供了新的前景,展示了既理想的性能又具有稳定性,无需添加剂或粘合剂,且依赖于环境友好型解决方案。