Suppr超能文献

使用Eventer对自发突触波形进行可重复的监督学习辅助分类。

Reproducible supervised learning-assisted classification of spontaneous synaptic waveforms with Eventer.

作者信息

Winchester Giles, Steele Oliver G, Liu Samuel, Maia Chagas Andre, Aziz Wajeeha, Penn Andrew C

机构信息

School of Life Sciences, University of Sussex, Brighton, United Kingdom.

出版信息

Front Neuroinform. 2024 Sep 13;18:1427642. doi: 10.3389/fninf.2024.1427642. eCollection 2024.

Abstract

Detection and analysis of spontaneous synaptic events is an extremely common task in many neuroscience research labs. Various algorithms and tools have been developed over the years to improve the sensitivity of detecting synaptic events. However, the final stages of most procedures for detecting synaptic events still involve the manual selection of candidate events. This step in the analysis is laborious and requires care and attention to maintain consistency of event selection across the whole dataset. Manual selection can introduce bias and subjective selection criteria that cannot be shared with other labs in reporting methods. To address this, we have created Eventer, a standalone application for the detection of spontaneous synaptic events acquired by electrophysiology or imaging. This open-source application uses the freely available MATLAB Runtime and is deployed on Mac, Windows, and Linux systems. The principle of the Eventer application is to learn the user's "expert" strategy for classifying a set of detected event candidates from a small subset of the data and then automatically apply the same criterion to the remaining dataset. Eventer first uses a suitable model template to pull out event candidates using fast Fourier transform (FFT)-based deconvolution with a low threshold. Random forests are then created and trained to associate various features of the events with manual labeling. The stored model file can be reloaded and used to analyse large datasets with greater consistency. The availability of the source code and its user interface provide a framework with the scope to further tune the existing Random Forest implementation, or add additional, artificial intelligence classification methods. The Eventer website (https://eventerneuro.netlify.app/) includes a repository where researchers can upload and share their machine learning model files and thereby provide greater opportunities for enhancing reproducibility when analyzing datasets of spontaneous synaptic activity. In summary, Eventer, and the associated repository, could allow researchers studying synaptic transmission to increase throughput of their data analysis and address the increasing concerns of reproducibility in neuroscience research.

摘要

在许多神经科学研究实验室中,检测和分析自发性突触事件是一项极为常见的任务。多年来,人们开发了各种算法和工具来提高检测突触事件的灵敏度。然而,大多数突触事件检测程序的最后阶段仍然需要人工选择候选事件。分析中的这一步骤很费力,需要小心谨慎以保持整个数据集事件选择的一致性。人工选择可能会引入偏差和主观选择标准,而这些在报告方法中无法与其他实验室共享。为了解决这个问题,我们创建了Eventer,这是一个用于检测通过电生理或成像获取的自发性突触事件的独立应用程序。这个开源应用程序使用免费的MATLAB运行时,并部署在Mac、Windows和Linux系统上。Eventer应用程序的原理是从数据的一个小子集中学习用户对一组检测到的事件候选进行分类的“专家”策略,然后自动将相同的标准应用于其余数据集。Eventer首先使用合适的模型模板,通过基于快速傅里叶变换(FFT)的低阈值去卷积提取事件候选。然后创建并训练随机森林,将事件的各种特征与人工标记相关联。存储的模型文件可以重新加载并用于以更高的一致性分析大型数据集。源代码及其用户界面的可用性提供了一个框架,有进一步调整现有随机森林实现或添加其他人工智能分类方法的空间。Eventer网站(https://eventerneuro.netlify.app/)包括一个存储库,研究人员可以在其中上传和共享他们的机器学习模型文件,从而在分析自发性突触活动数据集时提供更多提高可重复性的机会。总之,Eventer以及相关的存储库可以让研究突触传递的研究人员提高其数据分析的通量,并解决神经科学研究中对可重复性日益增长的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85a7/11427245/638ae59142b1/fninf-18-1427642-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验