Chen Liangliang, Maes Michal, Cochran Alicia M, Avila Julian R, Derbyshire Paul, Sklenar Jan, Haas Kelsey M, Villén Judit, Menke Frank L H, Torii Keiko U
Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, 78712 USA.
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA.
bioRxiv. 2024 Sep 20:2024.09.20.612365. doi: 10.1101/2024.09.20.612365.
Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development. ER_CT is required for the binding of a receptor kinase inhibitor, BKI1, and two U-box E3 ligases PUB30 and PUB31 that inactivate activated ER. We further identify ER_CT as a phosphodomain transphosphorylated by the co-receptor BAK1. The phosphorylation impacts the tail structure, likely releasing from autoinhibition. The phosphonull version enhances BKI1 association, whereas the phosphomimetic version promotes PUB30/31 association. Thus, ER_CT acts as an off-on-off toggle switch, facilitating the release of BKI1 inhibition, enabling signal activation, and swiftly turning over the receptors afterwards. Our results elucidate a mechanism fine-tuning receptor signaling via a phosphoswitch module, keeping the receptor at a low basal state and ensuring the robust yet transient activation upon ligand perception.
信号事件的动态控制需要对处于活性状态的受体进行快速调节。通过聚焦于拟南芥ERECTA(ER)受体激酶,该激酶感知肽配体以控制多个发育过程,我们报道了一种防止受体活性异常的机制。ER的C末端尾巴(ER_CT)作为一个自抑制结构域发挥作用:去除它会在花序和气孔发育过程中赋予更高的激酶活性和过度活性。ER_CT是受体激酶抑制剂BKI1以及两种使活化的ER失活的U-box E3连接酶PUB30和PUB31结合所必需的。我们进一步确定ER_CT是一种被共受体BAK1反式磷酸化的磷酸化结构域。这种磷酸化影响尾巴结构,可能从自抑制中释放出来。磷酸化缺失版本增强了与BKI1的结合,而磷酸化模拟版本促进了与PUB30/31的结合。因此,ER_CT充当了一个开-关-开的切换开关,促进BKI1抑制的释放,使信号得以激活,并随后迅速使受体周转。我们的结果阐明了一种通过磷酸化开关模块微调受体信号传导的机制,使受体保持在低基础状态,并确保在感知配体时进行强大而短暂的激活。