Suppr超能文献

一种基于集成经验模态分解(EEMD)-粒子群优化算法(PSO)-支持向量机(SVM)的模拟电路故障诊断方法。

A fault diagnosis method for analog circuits based on EEMD-PSO-SVM.

作者信息

Zhao Shuhan, Liang Xu, Wang Ling, Zhang Hao, Li Guiqiang, Chen Jing

机构信息

College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.

出版信息

Heliyon. 2024 Sep 19;10(18):e38064. doi: 10.1016/j.heliyon.2024.e38064. eCollection 2024 Sep 30.

Abstract

Analog circuit is an crucial component of electronic equipment, and the ability to diagnose its fault state quickly and accurately is essential for ensuring the safety and reliability of these electronic equipment. This paper addresses the problems of low diagnostic accuracy and the difficulties associated with model parameter selection in traditional fault diagnosis methods, particularly when dealing with nonlinear and non-stationary fault signals. A fault diagnosis method for analog circuits is proposed, which utilizes Ensemble Empirical Mode Decomposition (EEMD) for features extraction, the Maximum Information Coefficient algorithm (MIC) for features selection, and Particle Swarm Optimization (PSO) for optimizing Support Vector Machine (SVM) classification. Firstly, EEMD is used to adaptively decompose the fault signals in the circuit to extract multi-scale fault features. Secondly, the extracted features are quantitatively evaluated using the Pearson correlation coefficient and energy value analysis, leading to the construction of a fault feature vector is constructed. On this basis, the MIC feature selection algorithm is applied to further optimize the feature vector. Finally, an efficient fault classification model is developed by optimizing the hyperparameters of the SVM model using PSO. The simulation results show that the proposed method effectively overcome the problems of model complexity and low classification accuracy caused by improper selection of wavelet basis function. The accuracy of fault diagnosis and the efficiency of model training are significantly superior to those of traditional methods.

摘要

模拟电路是电子设备的关键组成部分,快速准确地诊断其故障状态的能力对于确保这些电子设备的安全和可靠性至关重要。本文针对传统故障诊断方法中诊断准确率低以及模型参数选择困难的问题,特别是在处理非线性和非平稳故障信号时。提出了一种模拟电路故障诊断方法,该方法利用总体经验模态分解(EEMD)进行特征提取,最大信息系数算法(MIC)进行特征选择,并利用粒子群优化(PSO)对支持向量机(SVM)分类进行优化。首先,使用EEMD对电路中的故障信号进行自适应分解,以提取多尺度故障特征。其次,利用皮尔逊相关系数和能量值分析对提取的特征进行定量评估,从而构建故障特征向量。在此基础上,应用MIC特征选择算法进一步优化特征向量。最后,通过PSO优化SVM模型的超参数,建立了高效的故障分类模型。仿真结果表明,该方法有效地克服了小波基函数选择不当导致的模型复杂度高和分类准确率低的问题。故障诊断的准确率和模型训练的效率明显优于传统方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验