Suppr超能文献

所有地点的长期概率温度预测。

Long-term probabilistic temperature projections for all locations.

作者信息

Chen Xin, Raftery Adrian E, Battisti David S, Liu Peiran R

机构信息

Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA.

Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640, USA.

出版信息

Clim Dyn. 2023 Apr;60(7-8):2303-2314. doi: 10.1007/s00382-022-06441-8. Epub 2022 Aug 12.

Abstract

The climate change projections of the Intergovernmental Panel on Climate Change are based on scenarios for future emissions, but these are not statistically-based and do not have a full probabilistic interpretation. Raftery et al. (Nat Clim Change 7:637-641, 2017) and Liu and Raftery (Commun Earth Environ 2:1-10, 2021) developed probabilistic forecasts for global average temperature change to 2100, but these do not give forecasts for specific parts of the globe. Here we develop a method for probabilistic long-term spatial forecasts of local average annual temperature change, combining the probabilistic global method with a pattern scaling approach. This yields a probability distribution for temperature in any year and any part of the globe in the future. Out-of-sample predictive validation experiments show the method to be well calibrated. Consistent with previous studies, we find that for long-term temperature changes, high latitudes warm more than low latitudes, continents more than oceans, and the Northern Hemisphere more than the Southern Hemisphere, except for the North Atlantic. There is a 5% chance that the temperature change for the Arctic would reach 16 °C. With probability 95%, the temperature of North Africa, West Asia and most of Europe will increase by at least 2 °C. We find that natural variability is a large part of the uncertainty in early years, but this declines so that by 2100 most of the overall uncertainty comes from model uncertainty and uncertainty about future emissions.

摘要

政府间气候变化专门委员会对气候变化的预测是基于未来排放情景,但这些情景并非基于统计数据,也没有完整的概率解释。拉夫蒂等人(《自然气候变化》7:637 - 641,2017年)以及刘和拉夫蒂(《地球与环境通讯》2:1 - 10,2021年)对到2100年的全球平均气温变化进行了概率预测,但这些预测并未针对全球特定地区给出预报。在此,我们开发了一种用于局部年平均气温变化概率长期空间预测的方法,将概率全球方法与模式缩放方法相结合。这产生了未来任何一年全球任何地区气温的概率分布。样本外预测验证实验表明该方法校准良好。与先前的研究一致,我们发现对于长期气温变化,高纬度地区比低纬度地区升温更多,大陆比海洋升温更多,北半球比南半球升温更多,但北大西洋除外。北极地区气温变化达到16℃的可能性为5%。在95%的概率下,北非、西亚和欧洲大部分地区的气温将至少升高2℃。我们发现,在早期,自然变率是不确定性的很大一部分,但这种情况会下降,以至于到2100年,总体不确定性的大部分来自模型不确定性和未来排放的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f34/11434194/24f4cf6b75c3/nihms-2024681-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验