Chen Xin, Raftery Adrian E, Battisti David S, Liu Peiran R
Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA.
Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640, USA.
Clim Dyn. 2023 Apr;60(7-8):2303-2314. doi: 10.1007/s00382-022-06441-8. Epub 2022 Aug 12.
The climate change projections of the Intergovernmental Panel on Climate Change are based on scenarios for future emissions, but these are not statistically-based and do not have a full probabilistic interpretation. Raftery et al. (Nat Clim Change 7:637-641, 2017) and Liu and Raftery (Commun Earth Environ 2:1-10, 2021) developed probabilistic forecasts for global average temperature change to 2100, but these do not give forecasts for specific parts of the globe. Here we develop a method for probabilistic long-term spatial forecasts of local average annual temperature change, combining the probabilistic global method with a pattern scaling approach. This yields a probability distribution for temperature in any year and any part of the globe in the future. Out-of-sample predictive validation experiments show the method to be well calibrated. Consistent with previous studies, we find that for long-term temperature changes, high latitudes warm more than low latitudes, continents more than oceans, and the Northern Hemisphere more than the Southern Hemisphere, except for the North Atlantic. There is a 5% chance that the temperature change for the Arctic would reach 16 °C. With probability 95%, the temperature of North Africa, West Asia and most of Europe will increase by at least 2 °C. We find that natural variability is a large part of the uncertainty in early years, but this declines so that by 2100 most of the overall uncertainty comes from model uncertainty and uncertainty about future emissions.
政府间气候变化专门委员会对气候变化的预测是基于未来排放情景,但这些情景并非基于统计数据,也没有完整的概率解释。拉夫蒂等人(《自然气候变化》7:637 - 641,2017年)以及刘和拉夫蒂(《地球与环境通讯》2:1 - 10,2021年)对到2100年的全球平均气温变化进行了概率预测,但这些预测并未针对全球特定地区给出预报。在此,我们开发了一种用于局部年平均气温变化概率长期空间预测的方法,将概率全球方法与模式缩放方法相结合。这产生了未来任何一年全球任何地区气温的概率分布。样本外预测验证实验表明该方法校准良好。与先前的研究一致,我们发现对于长期气温变化,高纬度地区比低纬度地区升温更多,大陆比海洋升温更多,北半球比南半球升温更多,但北大西洋除外。北极地区气温变化达到16℃的可能性为5%。在95%的概率下,北非、西亚和欧洲大部分地区的气温将至少升高2℃。我们发现,在早期,自然变率是不确定性的很大一部分,但这种情况会下降,以至于到2100年,总体不确定性的大部分来自模型不确定性和未来排放的不确定性。