Liang Zihui, Wang Peilin, Li Zhenrun, Li Wenyan, Ma Qiang
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Anal Chem. 2024 Oct 15;96(41):16443-16452. doi: 10.1021/acs.analchem.4c04460. Epub 2024 Sep 30.
A metasurface as an artificial electromagnetic structure can concentrate optical energy into nanometric volumes to strongly enhance the light-matter interaction, which has been becoming a powerful platform for optical sensing, nonlinear effects, and quantum optics. Herein, we developed a novel hybrid plasmonic-dielectric metasurface consisting of Au nanorings (Au NRs) and TiO nanoparticles derived from MXene (TiO NPs@MXene). The hybrid metasurface simultaneously benefited from the high near-field enhancement effect of plasmonic materials and the low loss of dielectric materials. Furthermore, the optical modulation efficiency of the hybrid metasurface can be regulated by a magnetic mirror configuration. The magnetic mirror acted like a mirror, confining the electrons to a limited region and increasing the density of the surface plasmon. Moreover, the electrochemiluminescence (ECL) of the CuBDC metal-organic framework (CuBDC-MOF) served as a light source for the Au NRs/TiO NPs@MXene metasurface. Due to the exceptional light manipulation capability of the hybrid metasurface and the coordination of the magnetic mirror, the isotropic ECL signal can be dynamically amplified and converted into polarized emission. Finally, a metasurface-regulated ECL (MECL)-based biosensor with a dual-positive membrane protein recognition strategy was developed for the accurate identification of gastric cancer-derived extracellular vesicles. The novel MECL research opened up a new route in the realization of dynamically tunable metasurfaces for optical sensing and novel nanophotonic devices.
超表面作为一种人工电磁结构,可以将光能集中到纳米级体积中,以强烈增强光与物质的相互作用,这已成为光学传感、非线性效应和量子光学的强大平台。在此,我们开发了一种新型的混合等离子体-介电超表面,它由金纳米环(Au NRs)和源自MXene的二氧化钛纳米颗粒(TiO NPs@MXene)组成。这种混合超表面同时受益于等离子体材料的高近场增强效应和介电材料的低损耗。此外,混合超表面的光学调制效率可以通过磁镜配置来调节。磁镜的作用类似于镜子,将电子限制在有限区域内并增加表面等离子体的密度。此外,CuBDC金属有机框架(CuBDC-MOF)的电化学发光(ECL)用作Au NRs/TiO NPs@MXene超表面的光源。由于混合超表面出色的光操纵能力和磁镜的协同作用,各向同性的ECL信号可以被动态放大并转换为偏振发射。最后,开发了一种基于超表面调节的ECL(MECL)生物传感器,采用双阳性膜蛋白识别策略,用于准确识别胃癌来源的细胞外囊泡。这项新颖的MECL研究为实现用于光学传感的动态可调超表面和新型纳米光子器件开辟了一条新途径。