Vijayan Sukanya, Margesan Thirumal
Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
Mol Divers. 2025 Jun;29(3):2265-2282. doi: 10.1007/s11030-024-10989-4. Epub 2024 Sep 30.
Rheumatoid arthritis is a chronic autoimmune disease characterized by inflammation and joint damage, imposing a significant burden on affected individuals worldwide. Flavonoids, a class of natural compounds abundant in various plant-based foods, have shown promising anti-inflammatory and immunomodulatory effects, suggesting their potential as therapeutic agents for RA. In this study, we conducted a comprehensive investigation of identified LCMS compounds utilizing network pharmacology, computational modeling, in silico approaches, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in RA treatment. The study identified 5 flavonoid structures with common targets via LCMS and Integration of network pharmacology approaches enabled a comprehensive evaluation of the pharmacological profile of flavonoids in the context of RA treatment, guiding the selection of promising candidates for further experimental validation and clinical development. The top 10 targets were AKT1, PI3KR1, CDK2, EGFR, CDK6, NOS2, FLT3, ALOX5, CCNB1, and PTPRS via PPI network. The investigation emphasized several pathways, including the AGE-RAGE signaling pathway, resistance to EGFR tyrosine kinase inhibitors, the PI3K-AKT signaling network, and the Rap 1 signaling pathway. In silico studies estimated binding affinities that ranged from - 7.0 to - 10.0 kcal/mol. Schaftoside and Vitexin showed no toxicity in computational approach and found suitable for further investigations. Overall, our study underscores the potential of flavonoids as therapeutic agents for RA and highlights the utility of integrative approaches combining network pharmacology, computational modeling, in silico methods, and pharmacokinetic assessment in drug discovery and development processes.
类风湿性关节炎是一种慢性自身免疫性疾病,其特征为炎症和关节损伤,给全球受影响个体带来了沉重负担。黄酮类化合物是一类在各种植物性食物中大量存在的天然化合物,已显示出有前景的抗炎和免疫调节作用,表明它们作为类风湿性关节炎治疗药物的潜力。在本研究中,我们利用网络药理学、计算建模、计算机模拟方法和药代动力学评估,对已鉴定的液相色谱 - 质谱联用(LCMS)化合物进行了全面研究,以评估黄酮类化合物在类风湿性关节炎治疗中的疗效。该研究通过LCMS鉴定了5种具有共同靶点的黄酮类化合物结构,网络药理学方法的整合使得能够在类风湿性关节炎治疗背景下全面评估黄酮类化合物的药理学特征,指导选择有前景的候选物进行进一步的实验验证和临床开发。通过蛋白质 - 蛋白质相互作用(PPI)网络,前10个靶点为AKT1、PI3KR1、CDK2、EGFR、CDK6、NOS2、FLT3、ALOX5、CCNB1和PTPRS。该研究强调了几个途径,包括晚期糖基化终末产物 - 晚期糖基化终末产物受体(AGE - RAGE)信号通路、对表皮生长因子受体(EGFR)酪氨酸激酶抑制剂的抗性、磷脂酰肌醇 - 3激酶 - 蛋白激酶B(PI3K - AKT)信号网络和Rap 1信号通路。计算机模拟研究估计结合亲和力范围为 - 7.0至 - 10.0千卡/摩尔。schaftoside和牡荆素在计算机模拟方法中显示无毒性,适合进一步研究。总体而言,我们的研究强调了黄酮类化合物作为类风湿性关节炎治疗药物的潜力,并突出了在药物发现和开发过程中结合网络药理学、计算建模、计算机模拟方法和药代动力学评估的综合方法的实用性。